Spectral transitions for Aharonov-Bohm Laplacians on conical layers

被引:3
作者
Krejcirik, D. [1 ]
Lotoreichik, V. [2 ]
Ourmieres-Bonafos, T. [3 ,4 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
[2] Czech Acad Sci, Inst Nucl Phys, Dept Theoret Phys, Rez 25068, Czech Republic
[3] CNRS, Pl Lattre de Tassigny, F-75016 Paris, France
[4] Univ Paris 09, PSL Res Univ, CEREMADE, Pl Lattre de Tassigny, F-75016 Paris, France
关键词
Schrodinger operator; quantum layers; existence of bound states; spectral asymptotics; conical geometries; QUANTUM WAVE-GUIDES; BOUND-STATES; SCHRODINGER-OPERATORS; DISCRETE SPECTRUM; ROBIN LAPLACIANS; ASYMPTOTICS;
D O I
10.1017/prm.2018.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
引用
收藏
页码:1663 / 1687
页数:25
相关论文
共 50 条
[31]   Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles [J].
Abatangelo, Laura ;
Felli, Veronica .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) :3857-3903
[32]   Dynamical confinement for Schrödinger operators with magnetic potential and Aharonov-Bohm effect [J].
de Oliveira, C. R. ;
Romano, R. G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
[33]   Oscillatory patterns in the Ginzburg-Landau model driven by the Aharonov-Bohm potential [J].
Kachmar, Ayman ;
Pan, Xing-Bin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (10)
[34]   Effect of the Electric and Magnetic Fields with Aharonov-Bohm Flux Field in Quantum Dots [J].
Eshghi, M. ;
Azar, I. Ahmadi ;
Soudi, S. .
INTERNATIONAL JOURNAL OF NANOSCIENCE, 2021, 20 (02)
[35]   Probe of hydrogen atom in plasmas with magnetic, electric, and Aharonov-Bohm flux fields [J].
Bahar, M. K. ;
Soylu, A. .
PHYSICS OF PLASMAS, 2016, 23 (09)
[36]   Detection of pairing from the extended Aharonov-Bohm period in strongly correlated electron systems [J].
Kusakabe, K ;
Aoki, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (09) :2772-2775
[37]   Transmission gaps, trapped modes and Fano resonances in Aharonov-Bohm connected mesoscopic loops [J].
Mrabti, T. ;
Labdouti, Z. ;
El Abouti, O. ;
El Boudouti, E. H. ;
Fethi, F. ;
Djafari-Rouhani, B. .
PHYSICS LETTERS A, 2018, 382 (09) :613-620
[38]   Bound States for the Spin-1/2 Aharonov-Bohm Problem in a Rotating Frame [J].
Lima, Daniel F. ;
Cunha, Marcio M. ;
Pereira, Luis Fernando C. ;
Silva, Edilberto O. .
UNIVERSE, 2021, 7 (12)
[39]   Aharonov-Bohm effect in a Coulomb-type potential under the influence of a cutoff point [J].
Bakke, K. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (19)
[40]   Numerical Analysis of Nodal Sets for Eigenvalues of Aharonov-Bohm Hamiltonians on the Square with Application to Minimal Partitions [J].
Bonnaillie-Noel, V. ;
Helffer, B. .
EXPERIMENTAL MATHEMATICS, 2011, 20 (03) :304-322