Spectral transitions for Aharonov-Bohm Laplacians on conical layers

被引:3
作者
Krejcirik, D. [1 ]
Lotoreichik, V. [2 ]
Ourmieres-Bonafos, T. [3 ,4 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
[2] Czech Acad Sci, Inst Nucl Phys, Dept Theoret Phys, Rez 25068, Czech Republic
[3] CNRS, Pl Lattre de Tassigny, F-75016 Paris, France
[4] Univ Paris 09, PSL Res Univ, CEREMADE, Pl Lattre de Tassigny, F-75016 Paris, France
关键词
Schrodinger operator; quantum layers; existence of bound states; spectral asymptotics; conical geometries; QUANTUM WAVE-GUIDES; BOUND-STATES; SCHRODINGER-OPERATORS; DISCRETE SPECTRUM; ROBIN LAPLACIANS; ASYMPTOTICS;
D O I
10.1017/prm.2018.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
引用
收藏
页码:1663 / 1687
页数:25
相关论文
共 50 条
[21]   On Aharonov-Bohm operators with multiple colliding poles of any circulation [J].
Felli, Veronica ;
Noris, Benedetta ;
Siclari, Giovanni .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 258
[22]   Impenetrability of Aharonov-Bohm Solenoids: Proof of Norm Resolvent Convergence [J].
de Oliveira, Cesar R. ;
Pereira, Marciano .
LETTERS IN MATHEMATICAL PHYSICS, 2011, 95 (01) :41-51
[23]   Aharonov-Bohm effect in an attractive inverse-square potential [J].
Veloso, J. Carvalho ;
Bakke, K. .
ANNALS OF PHYSICS, 2025, 473
[24]   Landau levels on the hyperbolic plane in the presence of Aharonov-Bohm fields [J].
Mine, Takuya ;
Nomura, Yuji .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1701-1743
[25]   Bifurcation of double eigenvalues for Aharonov-Bohm operators with a moving pole [J].
Abatangelo, Laura ;
Felli, Veronica .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 256
[26]   Relativistic quantum dynamics of vector bosons in an Aharonov-Bohm potential [J].
Castro, Luis B. ;
Silva, Edilberto O. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (03)
[27]   Creation of planar charged fermions in Coulomb and Aharonov-Bohm potentials [J].
Khalilov, V. R. .
EUROPEAN PHYSICAL JOURNAL C, 2013, 73 (08) :1-8
[28]   Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles [J].
Abatangelo, Laura ;
Felli, Veronica ;
Noris, Benedetta ;
Nys, Manon .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (07) :2428-2487
[29]   Extended Aharonov-Bohm period analysis of strongly correlated electron systems [J].
Arita, R ;
Kusakabe, K ;
Kuroki, K ;
Aoki, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (07) :2086-2096
[30]   On the number of negative eigenvalues of Schrodinger operators with an Aharonov-Bohm magnetic field [J].
Balinsky, AA ;
Evans, WD ;
Lewis, RT .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014) :2481-2489