Schrodinger operator;
quantum layers;
existence of bound states;
spectral asymptotics;
conical geometries;
QUANTUM WAVE-GUIDES;
BOUND-STATES;
SCHRODINGER-OPERATORS;
DISCRETE SPECTRUM;
ROBIN LAPLACIANS;
ASYMPTOTICS;
D O I:
10.1017/prm.2018.64
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
机构:
East China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
NYU ECNU Inst Math Sci NYU Shanghai, Shanghai 200062, Peoples R ChinaLebanese Univ, Dept Math, Nabatieh, Lebanon
机构:
Univ Paris 11, Dept Math, F-91045 Orsay, FranceUniv Paris 11, Dept Math, F-91045 Orsay, France
Helffer, B.
Hoffmann-Ostenhof, T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, AustriaUniv Paris 11, Dept Math, F-91045 Orsay, France
Hoffmann-Ostenhof, T.
Nadirashvili, N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Math, Chicago, IL 60637 USAUniv Paris 11, Dept Math, F-91045 Orsay, France
机构:
Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 55, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
Felli, Veronica
Lena, Corentin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy