Spectral transitions for Aharonov-Bohm Laplacians on conical layers

被引:3
|
作者
Krejcirik, D. [1 ]
Lotoreichik, V. [2 ]
Ourmieres-Bonafos, T. [3 ,4 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
[2] Czech Acad Sci, Inst Nucl Phys, Dept Theoret Phys, Rez 25068, Czech Republic
[3] CNRS, Pl Lattre de Tassigny, F-75016 Paris, France
[4] Univ Paris 09, PSL Res Univ, CEREMADE, Pl Lattre de Tassigny, F-75016 Paris, France
关键词
Schrodinger operator; quantum layers; existence of bound states; spectral asymptotics; conical geometries; QUANTUM WAVE-GUIDES; BOUND-STATES; SCHRODINGER-OPERATORS; DISCRETE SPECTRUM; ROBIN LAPLACIANS; ASYMPTOTICS;
D O I
10.1017/prm.2018.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
引用
收藏
页码:1663 / 1687
页数:25
相关论文
共 50 条
  • [1] A quantum waveguide with Aharonov-Bohm magnetic field
    Najar, H.
    Raissi, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (01) : 92 - 103
  • [2] Superconductivity and the Aharonov-Bohm effect
    Kachmar, Ayman
    Pan, XingBin
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 216 - 220
  • [3] Diffraction of the Aharonov-Bohm Hamiltonian
    Yang, Mengxuan
    ANNALES HENRI POINCARE, 2021, 22 (11): : 3619 - 3640
  • [4] Aharonov-Bohm effect revisited
    Eskin, Gregory
    REVIEWS IN MATHEMATICAL PHYSICS, 2015, 27 (02)
  • [5] A New Version of the Aharonov-Bohm Effect
    De Oliveira, Cesar R.
    Romano, Renan G.
    FOUNDATIONS OF PHYSICS, 2020, 50 (03) : 137 - 146
  • [6] Eigenvalues variations for Aharonov-Bohm operators
    Lena, Corentin
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [7] PERIODIC SCHRODINGER OPERATORS AND AHARONOV-BOHM HAMILTONIANS
    Helffer, B.
    Hoffmann-Ostenhof, T.
    Nadirashvili, N.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 45 - 61
  • [8] Realization of adiabatic Aharonov-Bohm scattering with neutrons
    Sjoqvist, Erik
    Almquist, Martin
    Mattsson, Ken
    Gurkan, Zeynep Nilhan
    Hessmo, Bjorn
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [9] Semiclassical Asymptotics of the Aharonov-Bohm Interference Process
    Fischer, Stefan G.
    Gneiting, Clemens
    Buchleitner, Andreas
    ANNALEN DER PHYSIK, 2017, 529 (12)
  • [10] On Aharonov-Bohm Operators with Two Colliding Poles
    Abatangelo, Laura
    Felli, Veronica
    Lena, Corentin
    ADVANCED NONLINEAR STUDIES, 2017, 17 (02) : 283 - 296