Electrophysical and Electromagnetic Properties of Pure MWNTs and MWNT/PMMA Composite Materials Depending on Their Structure

被引:26
作者
Mazov, I. N. [1 ,2 ]
Kuznetsov, V. L. [1 ,3 ]
Moseenkov, S. I. [1 ,2 ]
Ishchenko, A. V. [1 ,3 ]
Romanenko, A. I. [2 ,4 ]
Anikeeva, O. B. [2 ,4 ]
Buryakov, T. I. [2 ,4 ]
Korovin, E. Yu. [5 ]
Zhuravlev, V. A. [5 ]
Suslyaev, V. I. [5 ]
机构
[1] Boreskov Inst Catalysis, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Novosibirsk State Tech Univ, Novosibirsk, Russia
[4] Nikolaev Inst Inorgan Chem, Novosibirsk, Russia
[5] Tomsk VV Kuibyshev State Univ, Tomsk 634050, Russia
关键词
Carbon nanotubes; Composites; Electromagnetic shielding; CARBON NANOTUBES; CONDUCTIVITY; POLYMER;
D O I
10.1080/1536383X.2010.488184
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three types of carbon multi-walled nanotubes (MWNT) with different morphology and mean diameter (7.5, 10.5, 22 nm) were used to produce polymethylmetacrylate-based composites (MWNT/PMMA) with variable MWNT loading (0.5-5wt%). The electrophysical properties of produced composites and electromagnetic response in frequency range of 2-12 GHz were investigated. Electrical conductivity of composites depends on the MWNT type increasing with lowering of the nanotube diameter and loading in composite. Reflectance and transmittance coefficients were calculated from dielectric permittivity data and found to correlate with electrical conductivity. The highest level of EM reflection was obtained for 7.5 nm MWNT-based composites and makes the value of 0.65-0.7, whereas 22 nm MWNT/PMMA composites are more transparent for EM radiation with reflection coefficient 0.3-0.4 for the highest MWNT loading. Thus MWNT/PMMA composites demonstrate high EM shielding properties.
引用
收藏
页码:505 / 515
页数:11
相关论文
共 24 条
[1]   Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J].
Che, RC ;
Peng, LM ;
Duan, XF ;
Chen, Q ;
Liang, XL .
ADVANCED MATERIALS, 2004, 16 (05) :401-+
[2]   Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite [J].
Coleman, JN ;
Curran, S ;
Dalton, AB ;
Davey, AP ;
McCarthy, B ;
Blau, W ;
Barklie, RC .
PHYSICAL REVIEW B, 1998, 58 (12) :R7492-R7495
[3]   Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability [J].
Deng, Longjiang ;
Han, Mangui .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[4]   Microwave applications of carbon nanotubes [J].
Dragoman, M ;
Hartnagel, HL ;
Tuovinen, J ;
Plana, R .
FREQUENZ, 2005, 59 (11-12) :251-263
[5]   Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability [J].
Du, FM ;
Fischer, JE ;
Winey, KI .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (24) :3333-3338
[6]   Debundling and dissolution of single-walled carbon nanotubes in amide solvents [J].
Furtado, CA ;
Kim, UJ ;
Gutierrez, HR ;
Pan, L ;
Dickey, EC ;
Eklund, PC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :6095-6105
[7]   Dimethylformamide: an effective dispersant for making ceramic-carbon nanotube composites [J].
Inam, Fawad ;
Yan, Haixue ;
Reece, Michael J. ;
Peijs, Ton .
NANOTECHNOLOGY, 2008, 19 (19)
[8]   Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon [J].
Kuznetsov, VL ;
Butenko, YV ;
Chuvilin, AL ;
Romanenko, AI ;
Okotrub, AV .
CHEMICAL PHYSICS LETTERS, 2001, 336 (5-6) :397-404
[9]   Effective permittivity of planar composites with randomly or periodically distributed conducting fibers [J].
Liu, L ;
Matitsine, SM ;
Gan, YB ;
Rozanov, KN .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (06)
[10]   Electromagnetic shielding properties of MWCNT/PMMA composites in Ka-band [J].
Mazov, Ilya ;
Kuznetsov, Vladimir ;
Moseenkov, Sergey ;
Usoltseva, Anna ;
Romanenko, Anatoly ;
Anikeeva, Olga ;
Buryakov, Timofey ;
Kuzhir, Polina ;
Maksimenko, Sergey ;
Bychanok, Dmitry ;
Macutkevic, Jan ;
Seliuta, Dalius ;
Valusis, Gintaras ;
Banys, Juras ;
Lambin, Philippe .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (11-12) :2662-2666