A stochastic spatio-temporal (SST) model to study cell-to-cell variability in HIV-1 infection

被引:5
作者
Cheng, Zhang [1 ]
Hoffmann, Alexander [1 ]
机构
[1] UC, Dept Microbiol Immunol & Mol Genet MIMG, Los Angeles, CA 92093 USA
关键词
Spatio-temporal model; Stochastic model; HIV infection; HIV integration; Sensitivity analysis; IMMUNODEFICIENCY-VIRUS TYPE-1; PREINTEGRATION COMPLEX; KINETICS; FUSION; ASSAY; TRAFFICKING; SIMULATIONS; LYMPHOCYTES; DYNAMICS; TRACKING;
D O I
10.1016/j.jtbi.2016.02.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although HIV viremia in infected patients proceeds in a manner that may be accounted for by deterministic mathematical models, single virus-cell encounters following initial HIV exposure result in a variety of outcomes, only one of which results in a productive infection. The development of single molecule tracking techniques in living cells allows studies of intracellular transport of HIV, but it remains less clear what its impact may be on viral integration efficiency. Here, we present a stochastic intracellular mathematical model of HIV replication that incorporates microtubule transport of viral components. Using this model, we could study single round infections and observe how viruses entering cells reach one of three potential fates degradation of the viral RNA genome, formation of LTR circles, or successful integration and establishment of a provirus. Our model predicts global trafficking properties, such as the probability and the mean time for a HIV viral particle to reach the nuclear pore. Interestingly, our model predicts that trafficking determines neither the probability or time of provirus establishment - instead, they are a function of vRNA degradation and reverse transcription reactions. Thus, our spatio-temporal model provides novel insights into the HIV infection process and may constitute a useful tool for the identification of promising drug targets. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 34 条
[1]   Intracellular transactivation of HIV can account for the decelerating decay of virus load during drug therapy [J].
Althaus, Christian L. ;
De Boer, Rob J. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[2]   Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins [J].
Anderson, Jenny L. ;
Campbell, Edward M. ;
Wu, Xiaolu ;
Vandegraaff, Nick ;
Engelman, Alan ;
Hope, Thomas J. .
JOURNAL OF VIROLOGY, 2006, 80 (19) :9754-9760
[3]   Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes [J].
Arhel, Nathalie ;
Genovesio, Auguste ;
Kim, Kyeong-Ae ;
Miko, Sarah ;
Perret, Emmanuelle ;
Olivo-Marin, Jean-Christophe ;
Shorte, Spencer ;
Charneau, Pierre .
NATURE METHODS, 2006, 3 (10) :817-824
[4]   HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore [J].
Arhel, Nathalie J. ;
Souquere-Besse, Sylvie ;
Munier, Sandie ;
Souque, Philippe ;
Guadagnini, Stéphanie ;
Rutherford, Sandra ;
Prévost, Marie-Christine ;
Allen, Terry D. ;
Chameau, Pierre .
EMBO JOURNAL, 2007, 26 (12) :3025-3037
[5]   Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease [J].
Berger, EA ;
Murphy, PM ;
Farber, JM .
ANNUAL REVIEW OF IMMUNOLOGY, 1999, 17 :657-700
[6]   Virus trafficking - learning from single-virus tracking [J].
Brandenburg, Boerries ;
Zhuang, Xiaowei .
NATURE REVIEWS MICROBIOLOGY, 2007, 5 (03) :197-208
[7]   Analysis of early human immunodeficiency virus type 1 DNA synthesis by use of a new sensitive assay for quantifying integrated provirus [J].
Brussel, A ;
Sonigo, P .
JOURNAL OF VIROLOGY, 2003, 77 (18) :10119-10124
[8]   Human immunodeficiency virus cDNA metabolism: Notable stability of two-long terminal repeat circles [J].
Butler, SL ;
Johnson, EP ;
Bushman, FD .
JOURNAL OF VIROLOGY, 2002, 76 (08) :3739-3747
[9]   A quantitative assay for HIV DNA integration in vivo [J].
Butler, SL ;
Hansen, MST ;
Bushman, FD .
NATURE MEDICINE, 2001, 7 (05) :631-634
[10]   Insights into the Dynamics of HIV-1 Protease: A Kinetic Network Model Constructed from Atomistic Simulations [J].
Deng, Nan-jie ;
Zheng, Weihua ;
Gallicchio, Emillio ;
Levy, Ronald M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (24) :9387-9394