Estimation of air pollution parameters using artificial neural networks

被引:0
|
作者
Cigizoglu, HK [1 ]
Alp, K [1 ]
Kömürcü, M [1 ]
机构
[1] Tech Univ Istanbul, Fac Civil Engn, Div Hydraul, TR-34469 Istanbul, Turkey
来源
ADVANCES IN AIR POLLUTION MODELING FOR ENVIRONMENTAL SECURITY | 2005年 / 54卷
关键词
air pollution parameters; artificial neural networks; estimation; radial basis functions;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The modeling of air pollution parameters is an issue investigated using different techniques. The pollution time series, however, are not continuous and contain gaps. Therefore, methods to infill the gaps providing satisfactory estimations are quite significant. In the presented study two ANN methods, feed forward back propagation, FFBP, and radial basis functions, RBF, were presented to estimate the SO2 values using the NO and CO values. It was seen that both ANN methods provided superior performances to conventional multi linear regression, MLR, method. The ANN performances were found satisfactory considering the selected performance criteria and the testing stage plots.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 50 条
  • [1] Air pollution prediction by artificial neural networks
    Furtado, MIV
    Ebecken, NFF
    ENVIRONMENTAL COASTAL REGIONS III, 2000, 5 : 95 - 104
  • [2] Estimation of strength parameters of rock using artificial neural networks
    Sarkar, Kripamoy
    Tiwary, Avyaktanand
    Singh, T. N.
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2010, 69 (04) : 599 - 606
  • [3] Estimation of strength parameters of rock using artificial neural networks
    Kripamoy Sarkar
    Avyaktanand Tiwary
    T. N. Singh
    Bulletin of Engineering Geology and the Environment, 2010, 69 : 599 - 606
  • [4] SUBJECTIVE AIR TRAFFIC COMPLEXITY ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    Andrasi, Petar
    Radisic, Tomislav
    Novak, Doris
    Juricic, Biljana
    PROMET-TRAFFIC & TRANSPORTATION, 2019, 31 (04): : 377 - 386
  • [5] Air Pollution Forecasting Using Artificial and Wavelet Neural Networks with Meteorological Conditions
    Guo, Qingehun
    He, Zhenfang
    Li, Shanshan
    Li, Xinzhou
    Meng, Jingjing
    Hou, Zhanfang
    Liu, Jiazhen
    Chen, Yongjin
    AEROSOL AND AIR QUALITY RESEARCH, 2020, 20 (06) : 1429 - 1439
  • [6] Estimation of Coal's Sorption Parameters Using Artificial Neural Networks
    Skiba, Marta
    Mlynarczuk, Mariusz
    MATERIALS, 2020, 13 (23) : 1 - 11
  • [7] Estimation of the RiIG-Distribution Parameters Using the Artificial Neural Networks
    Mezache, Amar
    Chalabi, Izzeddine
    2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2013), 2013, : 291 - 296
  • [8] Artificial Neural Networks Modeling to Reduce Industrial Air Pollution
    Boger, Zvi
    APPLICATIONS OF SOFT COMPUTING: FROM THEORY TO PRAXIS, 2009, 58 : 63 - 71
  • [9] Forecasting the air pollution with using artificial neural networks: The case study; Tehran city
    Gholizadeh, M.H.
    Darand, M.
    Journal of Applied Sciences, 2009, 9 (21) : 3882 - 3887
  • [10] ARTIFICIAL NEURAL NETWORKS FOR ESTIMATION OF KINETIC ANALYTICAL PARAMETERS
    VENTURA, S
    SILVA, M
    PEREZBENDITO, D
    HERVAS, C
    ANALYTICAL CHEMISTRY, 1995, 67 (09) : 1521 - 1525