Isotropy groups of free racks and quandles

被引:2
作者
Parker, Jason [1 ]
机构
[1] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
关键词
Racks; quandles; isotropy;
D O I
10.1142/S0219498822501638
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we characterize the (covariant) isotropy groups of free, finitely generated racks and quandles. As a consequence, we show that the usual inner automorphisms of such racks and quandles are precisely those automorphisms that are "coherently extendible". We then use this result to compute the global isotropy groups of the categories of racks and quandles, i.e. the automorphism groups of the identity functors of these categories.
引用
收藏
页数:30
相关论文
共 8 条
[1]   Embeddings of quandles into groups [J].
Bardakov, Valeriy ;
Nasybullov, Timur .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (07)
[2]  
Belk J, 2015, LECT NOTES COMPUT SC, V9160, P1, DOI 10.1007/978-3-662-47709-0_1
[3]   AN INNER AUTOMORPHISM IS ONLY AN INNER AUTOMORPHISM, BUT AN INNER ENDOMORPHISM CAN BE SOMETHING STRANGE [J].
Bergman, George M. .
PUBLICACIONS MATEMATIQUES, 2012, 56 (01) :91-126
[4]  
Dehornoy P, 2018, Arxiv, DOI arXiv:1711.09792
[5]   Isotropy of Algebraic Theories [J].
Hofstra, Pieter ;
Parker, Jason ;
Scott, Philip .
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2018, 341 :201-217
[6]   A CLASSIFYING INVARIANT OF KNOTS, THE KNOT QUANDLE [J].
JOYCE, D .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 23 (01) :37-65
[7]  
Parker J., 2020, THESIS U OTTAWA, DOI [10.20381/ruor-25256, DOI 10.20381/RUOR-25256]
[8]   Permutations, power operations, and the center of the category of racks [J].
Szymik, Markus .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) :230-240