Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes

被引:96
作者
Chen, SC [1 ]
Shi, DY [1 ]
Zhao, YC [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金;
关键词
anisotropic interpolation; nonconforming finite element; quasi-Wilson element;
D O I
10.1093/imanum/24.1.77
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an anisotropic interpolation theorem is presented that can be easily used to check the anisotropy of an element. A kind of quasi-Wilson element is considered for second-order problems on narrow quadrilateral meshes for which the usual regularity condition rho(K)/h(K) greater than or equal to c(0) > 0 is not satisfied, where h(K) is the diameter of the element K and rho(K) is the radius of the largest inscribed circle in K. Anisotropic error estimates of the interpolation error and the consistency error in the energy norm and the L-2-norm are given. Furthermore, we give a Poincare inequality on a trapezoid which improves a result of Zenisek.
引用
收藏
页码:77 / 95
页数:19
相关论文
共 17 条
[1]  
Adams R., 1975, Sobolev space
[2]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[3]  
APEL T, 1999, ADV NUMERICAL MATH
[4]  
Brenner S. C., 2007, Texts Appl. Math., V15
[5]   Accuracy analysis for quasi-Wilson element [J].
Chen, SC ;
Shi, DY .
ACTA MATHEMATICA SCIENTIA, 2000, 20 (01) :44-48
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[7]  
JIANG J, 1992, ACTA NUMER MATH, V3, P274
[8]   CONVERGENCE OF THE NONCONFORMING WILSON ELEMENT FOR ARBITRARY QUADRILATERAL MESHES [J].
LESAINT, P ;
ZLAMAL, M .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :33-52
[9]   GENERALIZED CONFORMING QUADRILATERAL MEMBRANE ELEMENT WITH VERTEX RIGID ROTATIONAL FREEDOM [J].
LONG, YQ ;
XU, Y .
COMPUTERS & STRUCTURES, 1994, 52 (04) :749-755
[10]  
SHI D, 1994, J NUMER MATH CHINESE, V2, P161