Tunable approximations to control time-to-solution in an HPC molecular docking Mini-App

被引:7
作者
Gadioli, Davide [1 ]
Palermo, Gianluca [1 ]
Cherubin, Stefano [1 ]
Vitali, Emanuele [1 ]
Agosta, Giovanni [1 ]
Manelfi, Candida [2 ]
Beccari, Andrea R. [2 ]
Cavazzoni, Carlo [3 ]
Sanna, Nico [4 ,5 ]
Silvano, Cristina [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Infomaz & Bioingn, Milan, Italy
[2] Dompe Farmaceut SpA Res Ctr, Laquila, Italy
[3] CINECA, Supercomp Innovat & Applicat Dept, Bologna, Italy
[4] CINECA, Supercomp Innovat & Applicat Dept, Rome, Italy
[5] Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, Viterbo, Italy
基金
欧盟地平线“2020”;
关键词
Autotuning; Molecular docking; Performance model; Approximate computing; NESTED-GRID MODEL; HIGH-RESOLUTION; DRUG DISCOVERY; SOFT DOCKING; PERFORMANCE; THERMOSPHERE; SIMULATION; ALGORITHM; DESIGN; LIGEN;
D O I
10.1007/s11227-020-03295-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The drug discovery process involves several tasks to be performed in vivo, in vitro and in silico. Molecular docking is a task typically performed in silico. It aims at finding the three-dimensional pose of a given molecule when it interacts with the target protein binding site. This task is often done for virtual screening a huge set of molecules to find the most promising ones, which will be forwarded to the later stages of the drug discovery process. Given the huge complexity of the problem, molecular docking cannot be solved by exploring the entire space of the ligand poses. State-of-the-art approaches face the problem by sampling the space of the ligand poses to generate results in a reasonable time budget. In this work, we improve the geometric approach to molecular docking by introducing tunable approximations. In particular, we analysed and enriched the original implementation with tunable software knobs to explore and control the performance-accuracy trade-offs. We modelled time-to-solution of the virtual screening task as a function of software knobs, input data features, and available computational resources. Therefore, the application can autotune its configuration according to a user-defined time budget. We used a Mini-App derived by LiGenDock-a state-of-the-art molecular docking application-to validate the proposed approach. We run the enhanced Mini-App on a high-performance computing system by using a very large database of pockets and ligands. The proposed approach exposes a time-to-solution interval spanning more than one order of magnitude with accuracy degradation up to 30%, more in general providing different accuracy levels according to the needs of the virtual screening campaign.
引用
收藏
页码:841 / 869
页数:29
相关论文
共 61 条
[1]  
[Anonymous], 2001, White Paper
[2]  
[Anonymous], DES AUT C
[3]  
Ansel J, 2011, INT SYM CODE GENER, P85, DOI 10.1109/CGO.2011.5764677
[4]   Autotuning in High-Performance Computing Applications [J].
Balaprakash, Prasanna ;
Dongarra, Jack ;
Gamblin, Todd ;
Hall, Mary ;
Hollingsworth, Jeffrey K. ;
Norris, Boyana ;
Vuduc, Richard .
PROCEEDINGS OF THE IEEE, 2018, 106 (11) :2068-2083
[5]   Use of Experimental Design To Optimize Docking Performance: The Case of LiGenDock, the Docking Module of Ligen, a New De Novo Design Program [J].
Beato, Claudia ;
Beccari, Andrea R. ;
Cavazzoni, Carlo ;
Lorenzi, Simone ;
Costantino, Gabriele .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (06) :1503-1517
[6]  
Beccari A. R., 2017, SCI REP-UK, V7, P1, DOI DOI 10.1038/S41598-016-0028-X
[7]   LiGen: A High Performance Workflow for Chemistry Driven de Novo Design [J].
Beccari, Andrea R. ;
Cavazzoni, Carlo ;
Beato, Claudia ;
Costantino, Gabriele .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (06) :1518-1527
[8]  
Bemardon F. F., 2006, Journal of Graphics Tools, V11, P1
[9]  
Bergstra J., 2012, 2012 INNOVATIVE PARA, P1, DOI [DOI 10.1109/INPAR.2012.6339587, 10.1109/InPar.2012.6339587]
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242