On Analytical Descriptions of Finite-Energy Paraxial Frozen Waves in Generalized Lorenz-Mie Theory

被引:0
作者
Valdivia, Nereida L. [1 ]
Ambrosio, Leonardo Andre [1 ]
机构
[1] Univ Sao Paulo, EESC USP, Sao Carlos Sch Engn, Dept Elect & Comp Engn SEL, Sao Carlos, SP, Brazil
来源
2017 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC) | 2017年
基金
巴西圣保罗研究基金会;
关键词
Mie theory; optical trapping and micromanipulation; scattering theory; INTEGRAL LOCALIZED APPROXIMATION; ATTENUATION RESISTANT BEAMS; FREQUENCY BESSEL BEAMS; LIGHT-BEAM; EXPERIMENTAL GENERATION; NONDIFFRACTING BEAMS; ANGULAR-MOMENTUM; OPTICAL BEAMS; SHAPE; MICROMANIPULATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims to achieve analytical descriptions of specific classes of finite-energy non-diffracting beams, viz. the so-called Frozen Waves, envisioning applications in optical trapping. Such solutions to the Fresnel diffraction integral can be constructed from specific discrete superpositions of finite-energy zero-order scalar Bessel-Gauss beams. Here, we present expressions for their beam shape coefficients in the context of the generalized Lorenz-Mie theory. The paraxial regime is valid for all Bessel-Gauss beams, thus allowing the method here presented to be purely analytic. The analyticity avoids both extensive numerical computation and optimization schemes. Radiation pressure cross sections, which are proportional to optical forces, are then evaluated for Rayleigh particles as an example of application. We expect Frozen Waves to serve, in the near future, as alternative laser beams in biomedical optics and in the optical micromanipulation of biological or auxiliary particles.
引用
收藏
页数:5
相关论文
共 33 条
[11]   DIFFRACTION-FREE BEAMS [J].
DURNIN, J ;
MICELI, JJ ;
EBERLY, JH .
PHYSICAL REVIEW LETTERS, 1987, 58 (15) :1499-1501
[12]   EXACT-SOLUTIONS FOR NONDIFFRACTING BEAMS .1. THE SCALAR THEORY [J].
DURNIN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04) :651-654
[13]   Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam [J].
Garcés-Chávez, V ;
McGloin, D ;
Melville, H ;
Sibbett, W ;
Dholakia, K .
NATURE, 2002, 419 (6903) :145-147
[14]   Optical levitation in a Bessel light beam [J].
Garcés-Chávez, V ;
Roskey, D ;
Summers, MD ;
Melville, H ;
McGloin, D ;
Wright, EM ;
Dholakia, K .
APPLIED PHYSICS LETTERS, 2004, 85 (18) :4001-4003
[15]   Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle -: art. no. 093602 [J].
Garcés-Chávez, V ;
McGloin, D ;
Padgett, MJ ;
Dultz, W ;
Schmitzer, H ;
Dholakia, K .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[16]   ON THE SCATTERING OF LIGHT BY A MIE SCATTER CENTER LOCATED ON THE AXIS OF AN AXISYMMETRIC LIGHT PROFILE [J].
GOUESBET, G ;
GREHAN, G .
JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1982, 13 (02) :97-103
[17]   Generalized Lorenz-Mie theories, the third decade: A perspective [J].
Gouesbet, G. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (14-16) :1223-1238
[18]  
Gouesbet G., 2016, J QUANT SPE IN PRESS
[19]   On the validity of localized approximations for Bessel beams: All N-Bessel beams are identically equal to zero [J].
Gouesbet, Gerard .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 176 :82-86
[20]  
Gouesbet G, 2011, GENERALIZED LORENZ-MIE THEORIES, pXXIII, DOI 10.1007/978-3-642-17194-9