On Analytical Descriptions of Finite-Energy Paraxial Frozen Waves in Generalized Lorenz-Mie Theory

被引:0
作者
Valdivia, Nereida L. [1 ]
Ambrosio, Leonardo Andre [1 ]
机构
[1] Univ Sao Paulo, EESC USP, Sao Carlos Sch Engn, Dept Elect & Comp Engn SEL, Sao Carlos, SP, Brazil
来源
2017 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC) | 2017年
基金
巴西圣保罗研究基金会;
关键词
Mie theory; optical trapping and micromanipulation; scattering theory; INTEGRAL LOCALIZED APPROXIMATION; ATTENUATION RESISTANT BEAMS; FREQUENCY BESSEL BEAMS; LIGHT-BEAM; EXPERIMENTAL GENERATION; NONDIFFRACTING BEAMS; ANGULAR-MOMENTUM; OPTICAL BEAMS; SHAPE; MICROMANIPULATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims to achieve analytical descriptions of specific classes of finite-energy non-diffracting beams, viz. the so-called Frozen Waves, envisioning applications in optical trapping. Such solutions to the Fresnel diffraction integral can be constructed from specific discrete superpositions of finite-energy zero-order scalar Bessel-Gauss beams. Here, we present expressions for their beam shape coefficients in the context of the generalized Lorenz-Mie theory. The paraxial regime is valid for all Bessel-Gauss beams, thus allowing the method here presented to be purely analytic. The analyticity avoids both extensive numerical computation and optimization schemes. Radiation pressure cross sections, which are proportional to optical forces, are then evaluated for Rayleigh particles as an example of application. We expect Frozen Waves to serve, in the near future, as alternative laser beams in biomedical optics and in the optical micromanipulation of biological or auxiliary particles.
引用
收藏
页数:5
相关论文
共 33 条
[1]  
Ambrosio L. A., VALIDITY RE IN PRESS
[2]  
Ambrosio L. A., ANAL DESCRIPTIONS FI
[3]   Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces [J].
Ambrosio, Leonardo A. ;
Hernandez-Figueroa, Hugo E. .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (07) :1893-1906
[4]   Optical forces experienced by arbitrary-sized spherical scatterers from superpositions of equal-frequency Bessel beams [J].
Ambrosio, Leonardo Andre ;
Zamboni-Rached, Michel .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (05) :B37-B46
[5]   Time-average forces over Rayleigh particles by superposition of equal-frequency arbitrary-order Bessel beams [J].
Ambrosio, Leonardo Andre ;
Ferreira, Mariana de Matos .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (05) :B67-B74
[6]   Analytical approach of ordinary frozen waves for optical trapping and micromanipulation [J].
Ambrosio, Leonardo Andre ;
Zamboni-Rached, Michel .
APPLIED OPTICS, 2015, 54 (10) :2584-2593
[7]   Nondiffracting optical beams: physical properties, experiments, and applications [J].
Bouchal, Z .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (07) :537-578
[8]   Study of Frozen Waves' theory through a continuous superposition of Bessel beams [J].
Dartora, C. A. ;
Nobrega, K. Z. ;
Dartora, Alexandre ;
Viana, Gustavo A. ;
Filho, Horacio Tertuliano S. .
OPTICS AND LASER TECHNOLOGY, 2007, 39 (07) :1370-1373
[9]   Notes on the Gaussian beam expansion [J].
Ding, DS ;
Zhang, Y .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 116 (03) :1401-1405
[10]   Generating attenuation-resistant frozen waves in absorbing fluid [J].
Dorrah, Ahmed H. ;
Zamboni-Rached, Michel ;
Mojahedi, Mo .
OPTICS LETTERS, 2016, 41 (16) :3702-3705