WHEN COTORSION MODULES ARE PURE INJECTIVE

被引:12
作者
Herzog, Ivo [1 ]
Rothmaler, Philipp [2 ]
机构
[1] Ohio State Univ, Lima, OH 45804 USA
[2] CUNY, Bronx, NY 10453 USA
关键词
Modules; cotorsion; pure injective; pure projective; Mittag-Leffler; pseudoflat; quasiflat; abelian groups; pseudofinite; pseudo-torsion; rings; coherent; von Neumann regular; pure semisimple; subcategories; definable; purely resolving; preenveloping; covariantly finite; Ziegler spectrum; dcc on pp formulas or finite matrix subgroups; MODEL-THEORY;
D O I
10.1142/S0219061309000835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize rings over which every cotorsion module is pure injective (Xu rings) in terms of certain descending chain conditions and the Ziegler spectrum, which renders the classes of von Neumann regular rings and of pure semisimple rings as two possible extremes. As preparation, descriptions of pure projective and Mittag-Leffler preenvelopes with respect to so-called definable subcategories and of pure generation for such are derived, which may be of interest on their own. Infinitary axiomatizations lead to coherence results previously known for the special case of flat modules. Along with pseudoflat modules we introduce quasiflat modules, which arise naturally in the model-theoretic and the category-theoretic contexts.
引用
收藏
页码:63 / 102
页数:40
相关论文
共 50 条
[41]   GORENSTEIN INJECTIVE ENVELOPES OF ARTINIAN MODULES [J].
Babaei, Massoumeh Nikkhah ;
Divaani-Aazar, Kamran .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (11) :4635-4643
[42]   Pseudo PQ-injective modules [J].
Zhu, Zhanmin .
TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) :375-382
[43]   RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES [J].
Zeng, Yuedi ;
Chen, Jianlong .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) :11-24
[44]   THE EXISTENCE OF RELATIVE PURE INJECTIVE ENVELOPES [J].
Zareh-Khoshchehreh, Fatemeh ;
Divaani-Aazar, Kamran .
COLLOQUIUM MATHEMATICUM, 2013, 130 (02) :251-264
[45]   GORENSTEIN INJECTIVE MODULES AND A GENERALIZATION OF ISCHEBECK FORMULA [J].
Sazeedeh, Reza .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (04)
[46]   Direct sum decompositions of projective and injective modules into virtually uniserial modules [J].
Behboodi, M. ;
Moradzadeh-Dehkordi, A. ;
Nejadi, M. Qourchi .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
[47]   KERNELS OF MORPHISMS BETWEEN INDECOMPOSABLE INJECTIVE MODULES [J].
Facchini, Alberto ;
Ecevit, Sule ;
Kosan, M. Tamer .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52A :69-82
[48]   Mutually Essentially Pseudo-injective Modules [J].
Truong Cong Quynh ;
Phan The Hai ;
Le Van Thuyet .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) :795-803
[49]   Flat covers and injective hulls of persistence modules [J].
Hyry, Eero ;
Puuska, Ville .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (02)
[50]   On subinjectivity domains of RD-injective modules [J].
Durgun, Yilmaz .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (08)