Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation

被引:25
作者
Chen, Q. [1 ]
Monk, P. [1 ]
Wang, X. [2 ]
Weile, D. [2 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Electromagnetism; scattering; time-domain; integral equation; EFIE; convolution quadrature; multistep method; BOUNDARY-ELEMENT METHODS; SCATTERING; DISCRETIZATION;
D O I
10.4208/cicp.121209.111010s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to apply convolution quadrature (CQ) to approximate the time domain electric field integral equation (EFIE) for electromagnetic scattering. By a suitable choice of CQ, we prove that the method is unconditionally stable and has the optimal order of convergence. Surprisingly, the resulting semi discrete EFIE is dispersive and dissipative, and we analyze this phenomena. Finally, we present numerical results supporting and extending our convergence analysis.
引用
收藏
页码:383 / 399
页数:17
相关论文
共 27 条
[1]  
Abboud T., 2001, Applied Computational Electromagnetics Symp, P146
[2]  
[Anonymous], 1989, Advanced Engineering Electromagnetics
[3]  
Bamberger A., 1986, Math. Methods Appl. Sci, V8, P405, DOI [10.1002/mma.1670080127, DOI 10.1002/MMA.1670080127]
[4]  
Banjai L., MULTISTEP MULTISTAGE
[5]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[6]   On traces for H(curl, Ω) in Lipschitz domains [J].
Buffa, A ;
Costabel, M ;
Sheen, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) :845-867
[7]   Boundary element methods for Maxwell's equations on non-smooth domains [J].
Buffa, A ;
Costabel, M ;
Schwab, C .
NUMERISCHE MATHEMATIK, 2002, 92 (04) :679-710
[8]  
COLTON D., 2013, Inverse Acoustic and Electromagnetic Scattering Theory, V3rd, DOI [10.1007/978-1-4614-4942-3, DOI 10.1007/978-1-4614-4942-3, DOI 10.1007/978-3-662-03537-5]
[9]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626
[10]   Sparse convolution quadrature for time domain boundary integral formulations of the wave equation [J].
Hackbusch, W. ;
Kress, W. ;
Sauter, S. A. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (01) :158-179