Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation

被引:22
|
作者
Chen, Q. [1 ]
Monk, P. [1 ]
Wang, X. [2 ]
Weile, D. [2 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Electromagnetism; scattering; time-domain; integral equation; EFIE; convolution quadrature; multistep method; BOUNDARY-ELEMENT METHODS; SCATTERING; DISCRETIZATION;
D O I
10.4208/cicp.121209.111010s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to apply convolution quadrature (CQ) to approximate the time domain electric field integral equation (EFIE) for electromagnetic scattering. By a suitable choice of CQ, we prove that the method is unconditionally stable and has the optimal order of convergence. Surprisingly, the resulting semi discrete EFIE is dispersive and dissipative, and we analyze this phenomena. Finally, we present numerical results supporting and extending our convergence analysis.
引用
收藏
页码:383 / 399
页数:17
相关论文
共 50 条
  • [1] Calderon Strategies for the Convolution Quadrature Time-Domain Electric Field Integral Equation
    Cordel, Pierrick
    Dely, Alexandre
    Merlini, Adrien
    Andriulli, Francesco P.
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 5 (02): : 379 - 388
  • [2] The Time-Domain Lippmann-Schwinger Equation and Convolution Quadrature
    Lechleiter, Armin
    Monk, Peter
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (02) : 517 - 540
  • [3] Stable solution of time-domain electric-field integral equation
    Zhao, Yan-Wen
    Nie, Zai-Ping
    Xu, Jian-Hua
    Wu, Sheng-Bo
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2004, 19 (02): : 148 - 152
  • [4] Stable and accurate solution of time-domain electric field integral equation
    Zhao, YW
    Nie, ZP
    Xu, JH
    Wu, SB
    2004 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS AND ITS APPLICATIONS, PROCEEDINGS, 2004, : 1 - 4
  • [5] Time-domain augmented electric field integral equation for a robust marching on in time solver
    Tian, Xuezhe
    Xiao, Gaobiao
    IET MICROWAVES ANTENNAS & PROPAGATION, 2014, 8 (09) : 688 - 694
  • [6] Method for stable and accurate solution of time-domain electric field integral equation
    School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
    Tien Tzu Hsueh Pao, 2006, 6 (1104-1108):
  • [7] Time-domain electric-field integral equation with central finite difference
    Jung, BH
    Sarkar, TK
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 31 (06) : 429 - 435
  • [8] Sparse convolution quadrature for time domain boundary integral formulations of the wave equation
    Hackbusch, W.
    Kress, W.
    Sauter, S. A.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (01) : 158 - 179
  • [9] An Oscillatory Quadrature Method for the Time-Domain Integral Equation using Laguerre Functions
    Zhu, Ming-Da
    Lin, Zhongchao
    Zhao, Xunwang
    Zhang, Yu
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [10] On the Static Loop Modes in the Marching-on-in-Time Solution of the Time-Domain Electric Field Integral Equation
    Shi, Yifei
    Bagci, Hakan
    Lu, Mingyu
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 : 317 - 320