GLU3.0: Fast GPU-based Parallel Sparse LU Factorization for Circuit Simulation

被引:23
|
作者
Peng, Shaoyi [1 ]
Tan, Sheldon X. -D. [2 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, UCR, Dept Elect Engn, Riverside, CA USA
关键词
Sparse matrices; Graphics processing units; Parallel processing; Circuit simulation; Kernel; Instruction sets; Task analysis; GPU; LU factorization; left-looking LU factorization; sparse matrices; GLU;
D O I
10.1109/MDAT.2020.2974910
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Editor's note: Many scientific computing problems, including circuit simulations, rely on efficient lower-upper (LU) decomposition of sparse matrices. Prior studies took advantage of GPUs to parallelize LU decomposition, but they suffer from nontrivial data dependencies. This article presents a new method, called GLU3.0, to accelerate GPU-based sparse LU factorization. -Umit Ogras, Arizona State University
引用
收藏
页码:78 / 90
页数:13
相关论文
共 30 条
  • [21] NUMA-aware parallel sparse LU factorization for SPICE-based circuit simulators on ARM multi-core processors
    Zhou, Junsheng
    Yang, Wangdong
    Dong, Fengkun
    Lin, Shengle
    Cai, Qinyun
    Li, Kenli
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2024,
  • [22] GPU-based fast hyperspectral image classification using joint sparse representation with spectral consistency constraint
    Lei Pan
    Heng-Chao Li
    Jun Ni
    Chen Chen
    Xiang-Dong Chen
    Qian Du
    Journal of Real-Time Image Processing, 2018, 15 : 463 - 475
  • [23] GPU-based fast hyperspectral image classification using joint sparse representation with spectral consistency constraint
    Pan, Lei
    Li, Heng-Chao
    Ni, Jun
    Chen, Chen
    Chen, Xiang-Dong
    Du, Qian
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (03) : 463 - 475
  • [24] GPU-SFFT: A GPU based parallel algorithm for computing the Sparse Fast Fourier Transform (SFFT) of k-sparse signals
    Artiles, Oswaldo
    Saeed, Fahad
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3303 - 3311
  • [25] A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions
    Tseung, H. Wan Chan
    Ma, J.
    Beltran, C.
    MEDICAL PHYSICS, 2015, 42 (06) : 2967 - 2978
  • [26] Partial Element Equivalent Circuit Based Parallel Electromagnetic Transient Simulation on GPU
    Ranasinghe, Madhawa
    Dinavahi, Venkata
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (10)
  • [27] Fast Diffeomorphic Image Registration via GPU-based Parallel Computing: An Investigation of the Matching Cost Function
    Wu, Jiong
    Tang, Xiaoying
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [28] Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images
    Ryden, T.
    Lagerlof, J. Heydorn
    Hemmingsson, J.
    Marin, I.
    Svensson, J.
    Bath, M.
    Gjertsson, P.
    Bernhardt, P.
    EJNMMI PHYSICS, 2018, 5
  • [29] Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images
    T. Rydén
    J. Heydorn Lagerlöf
    J. Hemmingsson
    I. Marin
    J. Svensson
    M. Båth
    P. Gjertsson
    P. Bernhardt
    EJNMMI Physics, 5
  • [30] Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update
    Kim, Kyungsang
    Lee, Taewon
    Seong, Younghun
    Lee, Jongha
    Jang, Kwang Eun
    Choi, Jaegu
    Choi, Young Wook
    Kim, Hak Hee
    Shin, Hee Jung
    Cha, Joo Hee
    Cho, Seungryong
    Ye, Jong Chul
    MEDICAL PHYSICS, 2015, 42 (09) : 5342 - 5355