GLU3.0: Fast GPU-based Parallel Sparse LU Factorization for Circuit Simulation

被引:23
|
作者
Peng, Shaoyi [1 ]
Tan, Sheldon X. -D. [2 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, UCR, Dept Elect Engn, Riverside, CA USA
关键词
Sparse matrices; Graphics processing units; Parallel processing; Circuit simulation; Kernel; Instruction sets; Task analysis; GPU; LU factorization; left-looking LU factorization; sparse matrices; GLU;
D O I
10.1109/MDAT.2020.2974910
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Editor's note: Many scientific computing problems, including circuit simulations, rely on efficient lower-upper (LU) decomposition of sparse matrices. Prior studies took advantage of GPUs to parallelize LU decomposition, but they suffer from nontrivial data dependencies. This article presents a new method, called GLU3.0, to accelerate GPU-based sparse LU factorization. -Umit Ogras, Arizona State University
引用
收藏
页码:78 / 90
页数:13
相关论文
共 30 条
  • [1] Dynamic GPU Parallel Sparse LU Factorization for Fast Circuit Simulation
    Lee, Wai-Kong
    Achar, Ramachandra
    Nakhla, Michel S.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (11) : 2518 - 2529
  • [2] Sparse LU Factorization for Parallel Circuit Simulation on GPU
    Ren, Ling
    Chen, Xiaoming
    Wang, Yu
    Zhang, Chenxi
    Yang, Huazhong
    2012 49TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2012, : 1125 - 1130
  • [3] Algorithmic Advancements and a Comparative Investigation of Left and Right Looking Sparse LU Factorization on GPU Platform for Circuit Simulation
    Lee, Wai-Kong
    Achar, Ramachandra
    IEEE ACCESS, 2022, 10 : 78993 - 79003
  • [4] GPU-Accelerated Adaptive PCBSO Mode-Based Hybrid RLA for Sparse LU Factorization in Circuit Simulation
    Lee, Wai-Kong
    Achar, Ramachandra
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2021, 40 (11) : 2320 - 2330
  • [5] GPU-Accelerated Sparse LU Factorization for Circuit Simulation with Performance Modeling
    Chen, Xiaoming
    Ren, Ling
    Wang, Yu
    Yang, Huazhong
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (03) : 786 - 795
  • [6] SFLU: Synchronization-Free Sparse LU Factorization for Fast Circuit Simulation on GPUs
    Zhao, Jianqi
    Wen, Yao
    Luo, Yuchen
    Jin, Zhou
    Liu, Weifeng
    Zhou, Zhenya
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 37 - 42
  • [7] Parallel Sparse LU Factorization of Power Flow Jacobian using GPU
    Gnanavignesh, R.
    Shenoy, U. Jayachandra
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 1857 - 1862
  • [8] GPU-Based Parallelization for Fast Circuit Optimization
    Liu, Yifang
    Hu, Jiang
    DAC: 2009 46TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, VOLS 1 AND 2, 2009, : 943 - 946
  • [9] A Fast and Generic GPU-Based Parallel Reduction Implementation
    Rfaei Jradi, Walid Abdala
    Dantas do Nascimento, Hugo Alexandre
    Martins, Wellington Santos
    2018 SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS (WSCAD 2018), 2018, : 16 - 22
  • [10] The GPU-based parallel processing algorithm for fast inspection of semiconductor wafers
    Park, Youngdae
    Kim, Joon Seek
    Joo, Hyonam
    Journal of Institute of Control, Robotics and Systems, 2013, 19 (12) : 1072 - 1080