Linear stability of homogeneous Ricci solitons

被引:20
作者
Guenther, Christine [1 ]
Isenberg, James [2 ]
Knopf, Dan [3 ]
机构
[1] Pacific Univ, Coll Arts & Sci, Dept Math & Comp Sci, Forest Grove, OR 97116 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1155/IMRN/2006/96253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a step towards understanding the analytic behavior of type-III Ricci flow singularities, that is, immortal solutions that exhibit vertical bar Rm vertical bar <= C/t curvature decay, we examine the linearization of an equivalent flow at fixed points discovered recently by Baird, Danielo, and Lott: nongradient homogeneous expanding Ricci solitons on nilpotent or solvable Lie groups. For all explicitly known nonproduct examples, we demonstrate linear stability of the flow at these fixed points and prove that the linearizations generate C-o semigroups.
引用
收藏
页数:30
相关论文
共 48 条
[1]  
Angenent S, 2004, MATH RES LETT, V11, P493
[2]  
ANGENENT S, PRECISE ASYMPTOTICS
[3]  
[Anonymous], 1983, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-5561-1
[4]  
[Anonymous], ENTROPY FORMULA RICC
[5]  
BAIRD P, 3 DIMENSIONAL RICCI
[6]  
BERNDT J, 1995, LECT NOTES MATH, V1598
[7]  
Biquard O., 2000, Asterisque, V265, P109
[8]   Numerical and experimental investigation of mixed-mode fracture parameters on silicon nitride using the Brazilian disc test [J].
Levesque, G. ;
Arakere, N. K. ;
Mecholsky, J. J. ;
Gopalakrishnan, K. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2010, 33 (08) :490-503
[9]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[10]  
CHEEGER J, 1986, J DIFFER GEOM, V23, P309