Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells

被引:30
|
作者
Young, J. L. [1 ]
Birss, V. I. [1 ]
机构
[1] Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada
关键词
Ni-YSZ anode; Ni oxidation; Redox cycling; Solid oxide fuel cell (SOFC); Electrolyte cracking; MECHANICAL-PROPERTIES; RE-OXIDATION; REDUCTION;
D O I
10.1016/j.jpowsour.2010.09.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The full oxidation of Ni-YSZ anode-supported cells at high temperatures (>700 degrees C) is shown here to lead to much more severe degradation (larger quantity and wider cracks in the electrolyte) than at lower temperatures. This correlates with the linear mass gain/time profile observed in TGA experiments at high temperatures, indicative of diffusion controlled Ni oxidation and thus the presence of O-2 (and Ni/NiO) concentration gradients into the depth of the anode layer. At low partial pressures of O-2, the severity of cracking also increases. SEM studies of partially oxidized anode layers confirmed that Ni oxidation is non-homogeneous when carried out at either high temperatures or low pO(2), in which case the outer regions of the anode (near the anode/air interface) become almost fully oxidized, while the inner regions (near the electrolyte) remain metallic. Under these conditions, the continued volume expansion associated with NiO formation can then only occur towards the electrolyte, increasing the compressive stress inside the anode as the Ni continues to be oxidized, leading to electrolyte cracking and warping (convex to the electrolyte). To prevent severe degradation to the cell, efforts should therefore be made to avoid gradients in NiO/Ni content during oxygen exposure of Ni-YSZ anode-supported cells at high temperatures. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:7126 / 7135
页数:10
相关论文
共 50 条
  • [1] Oxidation failure modes of anode-supported solid oxide fuel cells
    Sarantaridis, D.
    Rudkin, R. A.
    Atkinson, A.
    JOURNAL OF POWER SOURCES, 2008, 180 (02) : 704 - 710
  • [2] Improvement of anode-supported solid oxide fuel cells
    Wang, Z. R.
    Qian, J. Q.
    Wang, S. R.
    Cao, J. D.
    Wen, T. L.
    SOLID STATE IONICS, 2008, 179 (27-32) : 1593 - 1596
  • [3] Strength of Anode-Supported Solid Oxide Fuel Cells
    Faes, A.
    Frandsen, H. L.
    Kaiser, A.
    Pihlatie, M.
    FUEL CELLS, 2011, 11 (05) : 682 - 689
  • [4] Fabrication and performance of anode-supported solid oxide fuel cells
    Holtappels, P
    Graule, T
    Gut, B
    Vogt, U
    Gauckler, L
    Jörger, M
    Perednis, D
    Honegger, K
    Robert, G
    Rambert, S
    McEvoy, AJ
    SOLID OXIDE FUEL CELLS VIII (SOFC VIII), 2003, 2003 (07): : 1003 - 1010
  • [5] Ceramic technologies for anode-supported solid oxide fuel cells
    Tancret, F
    Schleich, DM
    HIGH-PERFORMANCE CERAMICS III, PTS 1 AND 2, 2005, 280-283 : 419 - 424
  • [6] Transient modeling of anode-supported solid oxide fuel cells
    Xie, Y.
    Xue, X.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (16) : 6882 - 6891
  • [7] The effect of anode thickness on the performance of anode-supported solid oxide fuel cells
    Kim, JW
    Virkar, AV
    SOLID OXIDE FUEL CELLS (SOFC VI), 1999, 99 (19): : 830 - 839
  • [8] Enhancement of fuel transfer in anode-supported honeycomb solid oxide fuel cells
    Ikeda, Sou
    Nakajima, Hironori
    Kitahara, Tatsumi
    7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745
  • [9] The effect of HCl in syngas on Ni-YSZ anode-supported solid oxide fuel cells
    Xu, Chunchuan
    Gong, Mingyang
    Zondlo, John W.
    Liu, XingBo
    Finklea, Harry O.
    JOURNAL OF POWER SOURCES, 2010, 195 (08) : 2149 - 2158
  • [10] The effect of phosphine in syngas on Ni-YSZ anode-supported solid oxide fuel cells
    Xu, Chunchuan
    Zondlo, John W.
    Finklea, Harry O.
    Demircan, Oktay
    Gong, Mingyang
    Liu, XingBo
    JOURNAL OF POWER SOURCES, 2009, 193 (02) : 739 - 746