Periodic motions of a small body in the Newtonian field of a regular polygonal configuration of ν+1 bodies

被引:5
作者
Croustalloudi, M. N. [1 ]
Kalvouridis, T. J. [1 ]
机构
[1] Natl Tech Univ Athens, Dept Mech, Athens, Greece
关键词
Celestial mechanics; ring problem; periodic orbits;
D O I
10.1007/s10509-007-9716-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the simple periodic orbits of a particle that is subject to the gravitational action of the much bigger primary bodies which form a regular polygonal configuration of (nu+1) bodies when nu=8. We investigate the distribution of the characteristic curves of the families and their evolution in the phase space of the initial conditions, we describe various types of simple periodic orbits and we study their linear stability. Plots and tables illustrate the obtained material and reveal many interesting aspects regarding particle dynamics in such a multi-body system.
引用
收藏
页码:7 / 18
页数:12
相关论文
共 35 条
[1]   Bifurcations and equilibria in the extended N-body ring problem [J].
Arribas, M ;
Elipe, A .
MECHANICS RESEARCH COMMUNICATIONS, 2004, 31 (01) :1-8
[2]  
ARRIBAS M, 2003, MONOGRAF REAL ACAD S, V22, P21
[3]  
Arribas M., 2006, MONOGR REAL ACAD CIE, V28, P1
[4]   Restricted N+1-body problem: existence and stability of relative equilibria [J].
Bang, D ;
Elmabsout, B .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2004, 89 (04) :305-318
[5]  
CROUSTALLOUDI M, 2006, THESIS NAT TU ATHENS
[6]   Attracting domains in ring-type N-body formations [J].
Croustalloudi, Maria ;
Kalvouridis, Tilemahos .
PLANETARY AND SPACE SCIENCE, 2007, 55 (1-2) :53-69
[7]   Periodic solutions in the planar (n+1) ring problem with oblateness [J].
Elipe, Antonio ;
Arribas, Mercedes ;
Kalvouridis, Tilemahos J. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (06) :1640-1648
[8]  
GADOMSKI LJ, 1998, ASTRON J, V8, P21
[9]  
GOUDAS CL, 1991, NATO ADV SCI I B-PHY, V272, P371
[10]  
GREBENIKOV E, 1997, ASTRON J, V7, P151