Structuring Microbial Metabolic Responses to Multiplexed Stimuli via Self-Organizing Metabolomics Maps

被引:40
|
作者
Goodwin, Cody R. [1 ,2 ,6 ]
Covington, Brett C. [1 ]
Derewacz, Dagmara K. [1 ]
McNees, C. Ruth [1 ]
Wikswo, John P. [2 ,4 ,5 ]
McLean, John A. [1 ,2 ,3 ,6 ]
Bachmann, Brian O. [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Vanderbilt Inst Integrat Biosyst Res & Educ, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Vanderbilt Inst Chem Biol, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Dept Biomed Engn, Dept Mol Physiol & Biophys, Nashville, TN 37235 USA
[5] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[6] Vanderbilt Univ, Ctr Innovat Technol, Nashville, TN 37235 USA
来源
CHEMISTRY & BIOLOGY | 2015年 / 22卷 / 05期
关键词
BIOSYNTHETIC GENE CLUSTERS; NATURAL-PRODUCTS; SECONDARY METABOLISM; RPOB MUTATIONS; RNA-POLYMERASE; DISCOVERY; UNDECYLPRODIGIOSIN; EXPRESSION; ECTOINE; TOOLS;
D O I
10.1016/j.chembiol.2015.03.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Secondary metabolite biosynthesis in microorganisms responds to discrete chemical and biological stimuli; however, untargeted identification of these responses presents a significant challenge. Herein we apply multiplexed stimuli to Streptomyces coelicolor and collect the resulting response metabolomes via ion mobility-mass spectrometric analysis. Self-organizing map (SOM) analytics adapted for metabolomic data demonstrate efficient characterization of the subsets of primary and secondary metabolites that respond similarly across stimuli. Over 60% of all metabolic features inventoried from responses are either not observed under control conditions or produced at greater than 2-fold increase in abundance in response to at least one of the multiplexing conditions, reflecting how metabolites encode phenotypic changes in an organism responding to multiplexed challenges. Using abundance as an additional filter, each of 16 known S. coelicolor secondary metabolites is prioritized via SOM and observed at increased levels (1.2- to 22-fold compared with unperturbed) in response to one or more challenge conditions.
引用
收藏
页码:661 / 670
页数:10
相关论文
共 14 条
  • [1] Project Portfolio Exploration and Visualization using Self-Organizing Maps
    Naiem, Amgad
    El-Beltagy, Mohammed
    Seif, Sondos
    INTERNATIONAL CONFERENCE ON INFORMATICS AND SYSTEMS (INFOS 2016), 2016, : 222 - 227
  • [2] Analysis of the uncharted, druglike property space by self-organizing maps
    Takacs, Gergely
    Sandor, Mark
    Szalai, Zoltan
    Kiss, Robert
    Balogh, Gyorgy T.
    MOLECULAR DIVERSITY, 2022, 26 (05) : 2427 - 2441
  • [3] Exploring the Chemical Space of Multitarget Ligands Using Aligned Self-Organizing Maps
    Achenbach, Janosch
    Klingler, Franca-Maria
    Bloecher, Rene
    Moser, Daniel
    Haefner, Ann-Kathrin
    Roedl, Carmen B.
    Kretschmer, Simon
    Krueger, Bjoern
    Loehr, Frank
    Stark, Holger
    Hofmann, Bettina
    Steinhilber, Dieter
    Proschak, Ewgenij
    ACS MEDICINAL CHEMISTRY LETTERS, 2013, 4 (12): : 1169 - 1172
  • [4] Functional Motions Modulating VanA Ligand Binding Unraveled by Self-Organizing Maps
    Bouvier, Guillaume
    Duclert-Savatier, Nathalie
    Desdouits, Nathan
    Meziane-Cherif, Djalal
    Blondel, Arnaud
    Courvalin, Patrice
    Nilges, Michael
    Malliavin, Therese E.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (01) : 289 - 301
  • [5] Self-Organizing Maps for the Classification of Gallic Acylate Polyphenols as HSV-1 Inhibitors
    Qiu, Xianxiu
    Zhong, Meigong
    Xiang, Yangfei
    Qu, Chang
    Pei, Ying
    Zhang, Yingjun
    Yang, Chongren
    Gasteiger, Johann
    Xu, Jun
    Liu, Zhong
    Wang, Yifei
    MEDICINAL CHEMISTRY, 2014, 10 (04) : 388 - 401
  • [6] Discovery of Possible Gene Relationships through the Application of Self-Organizing Maps to DNA Microarray Databases
    Chavez-Alvarez, Rocio
    Chavoya, Arturo
    Mendez-Vazquez, Andres
    PLOS ONE, 2014, 9 (04):
  • [7] Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps
    Mortazavi, Ali
    Pepke, Shirley
    Jansen, Camden
    Marinov, Georgi K.
    Ernst, Jason
    Kellis, Manolis
    Hardison, Ross C.
    Myers, Richard M.
    Wold, Barbara J.
    GENOME RESEARCH, 2013, 23 (12) : 2136 - 2148
  • [8] iSOM-GSN: an integrative approach for transforming multi-omic data into gene similarity networks via self-organizing maps
    Fatima, Nazia
    Rueda, Luis
    BIOINFORMATICS, 2020, 36 (15) : 4248 - 4254
  • [9] Incremental clustering of sonar images using self-organizing maps combined with fuzzy adaptive resonance theory
    Chabane, Ahmed Nait
    Islam, Naveed
    Zerr, Benoit
    OCEAN ENGINEERING, 2017, 142 : 133 - 144
  • [10] Assigning Transcriptomic Subtypes to Chronic Lymphocytic Leukemia Samples Using Nanopore RNA-Sequencing and Self-Organizing Maps
    Arakelyan, Arsen
    Sirunyan, Tamara
    Khachatryan, Gisane
    Hakobyan, Siras
    Minasyan, Arpine
    Nikoghosyan, Maria
    Hakobyan, Meline
    Chavushyan, Andranik
    Martirosyan, Gevorg
    Hakobyan, Yervand
    Binder, Hans
    CANCERS, 2025, 17 (06)