Open-source, machine and deep learning-based automated algorithm for gestational age estimation through smartphone lens imaging

被引:9
作者
Desai, Arjun D. [1 ,5 ]
Peng, Chunlei [1 ,2 ]
Fang, Leyuan [1 ]
Mukherjee, Dibyendu [1 ]
Yeung, Andrew [1 ]
Jaffe, Stephanie J. [1 ]
Griffin, Jennifer B. [3 ]
Farsiu, Sina [1 ,4 ,5 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[3] RTI Int, Ctr Global Hlth, Res Triangle Pk, NC 27709 USA
[4] Duke Univ, Dept Ophthalmol, Med Ctr, Durham, NC 27710 USA
[5] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2018年 / 9卷 / 12期
关键词
COHERENCE TOMOGRAPHY IMAGES; RETINAL LAYER; SEGMENTATION; RETINOPATHY; FLUID;
D O I
10.1364/BOE.9.006038
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gestational age estimation at time of birth is critical for determining the degree of prematurity of the infant and for administering appropriate postnatal treatment. We present a fully automated algorithm for estimating gestational age of premature infants through smartphone lens imaging of the anterior lens capsule vasculature (ALCV). Our algorithm uses a fully convolutional network and blind image quality analyzers to segment usable anterior capsule regions. Then, it extracts ALCV features using a residual neural network architecture and trains on these features using a support vector machine-based classifier. The classification algorithm is validated using leave-one-out cross-validation on videos captured from 124 neonates. The algorithm is expected to be an influential tool for remote and point-of-care gestational age estimation of premature neonates in low-income countries. To this end, we have made the software open source. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:6038 / 6052
页数:15
相关论文
共 43 条
  • [1] Abadi M., 2016, TENSORFLOW LARGESCAL
  • [2] Anantrasirichai N, 2013, I S BIOMED IMAGING, P1332
  • [3] [Anonymous], 2017, PRET BIRTH
  • [4] Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
    Asaoka, Ryo
    Murata, Hiroshi
    Iwase, Aiko
    Araie, Makoto
    [J]. OPHTHALMOLOGY, 2016, 123 (09) : 1974 - 1980
  • [5] SIMPLIFIED SCORE FOR ASSESSMENT OF FETAL MATURATION OF NEWLY BORN INFANTS
    BALLARD, JL
    NOVAK, KK
    DRIVER, M
    [J]. JOURNAL OF PEDIATRICS, 1979, 95 (05) : 769 - 774
  • [6] Born Too Soon: The global epidemiology of 15 million preterm births
    Blencowe, Hannah
    Cousens, Simon
    Chou, Doris
    Oestergaard, Mikkel
    Say, Lale
    Moller, Ann-Beth
    Kinney, Mary
    Lawn, Joy
    [J]. REPRODUCTIVE HEALTH, 2013, 10
  • [7] Bradski G., 2000, Dr. Dobb's journal of software tools, V3
  • [8] Expert Diagnosis of Plus Disease in Retinopathy of Prematurity From Computer-Based Image Analysis
    Campbell, J. Peter
    Ataer-Cansizoglu, Esra
    Bolon-Canedo, Veronica
    Bozkurt, Alican
    Erdogmus, Deniz
    Kalpathy-Cramer, Jayashree
    Patel, Samir N.
    Reynolds, James D.
    Horowitz, Jason
    Hutcheson, Kelly
    Shapiro, Michael
    Repka, Michael X.
    Ferrone, Phillip
    Drenser, Kimberly
    Ana Martinez-Castellanos, Maria
    Ostmo, Susan
    Jonas, Karyn
    Chan, R. V. Paul
    Chiang, Michael F.
    [J]. JAMA OPHTHALMOLOGY, 2016, 134 (06) : 651 - 657
  • [10] LIBSVM: A Library for Support Vector Machines
    Chang, Chih-Chung
    Lin, Chih-Jen
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)