Superflexible and Lead-Free Piezoelectric Nanogenerator as a Highly Sensitive Self-Powered Sensor for Human Motion Monitoring

被引:90
|
作者
Yu, Di [1 ]
Zheng, Zhipeng [1 ]
Liu, Jiadong [1 ]
Xiao, Hongyuan [1 ]
Geng Huangfu [1 ]
Guo, Yiping [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Superfiexible; Piezoelectric sensors; Curie temperature; Human motion sensing; HIGH-PERFORMANCE; THIN-FILM; TRIBOELECTRIC NANOGENERATOR; ENERGY-CONVERSION; NANOFIBERS; NANOWIRES; MEMBRANE;
D O I
10.1007/s40820-021-00649-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For traditional piezoelectric sensors based on poled ceramics, a low curie temperature (T-c) is a fatal flaw due to the depolarization phenomenon. However, in this study, we find the low T-c would be a benefit for flexible piezoelectric sensors because small alterations of force trigger large changes in polarization. BaTi0.88Sn0.12O3 (BTS) with high piezoelectric coefficient and low T-c close to human body temperature is taken as an example for materials of this kind. Continuous piezoelectric BTS films were deposited on the flexible glass fiber fabrics (GFF), self-powered sensors based on the ultra-thin, superflexible, and polarization-free BTS-GFF/PVDF composite piezoelectric films are used for human motion sensing. In the low force region (1-9 N), the sensors have the outstanding performance with voltage sensitivity of 1.23 V N-1 and current sensitivity of 41.0 nA N-1. The BTS-GFF/PVDF sensors can be used to detect the tiny forces of falling water drops, finger joint motion, tiny surface deformation, and fatigue driving with high sensitivity. This work provides a new paradigm for the preparation of superfiexible, highly sensitive and wearable self-powered piezoelectric sensors, and this kind of sensors will have a broad application prospect in the fields of medical rehabilitation, human motion monitoring, and intelligent robot.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Flexible Hybrid Nanogenerator for Self-Powered Weather and Healthcare Monitoring Sensor
    Lee, Taegoon
    Kim, Inkyum
    Kim, Daewon
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (12)
  • [12] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [13] Lead-Free KNbO3 Nanoblocks Improved Triboelectric Nanogenerator with High Output Performance and Self-Powered Anticorrosion System
    Zhang, Haojun
    Guo, Yongliang
    Cui, Jinfeng
    Guo, Junhong
    Zhao, Gengrui
    Yang, Baoping
    CHEMISTRYSELECT, 2021, 6 (13): : 3169 - 3173
  • [14] Self-powered high responsivity ultraviolet radiation sensor by coupling ZnO based piezoelectric nanogenerator and photodetector
    Mahapatra, Abhinav
    Ajimsha, R. S.
    Misra, Pankaj
    APPLIED PHYSICS LETTERS, 2024, 124 (10)
  • [15] Magnetically levitated-triboelectric nanogenerator as a self-powered vibration monitoring sensor
    Zhang, Zengxing
    He, Jian
    Wen, Tao
    Zhai, Cong
    Han, Jianqiang
    Mu, Jiliang
    Jia, Wei
    Zhang, Binzhen
    Zhang, Wendong
    Chou, Xiujian
    Xue, Chenyang
    NANO ENERGY, 2017, 33 : 88 - 97
  • [16] Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring
    Lin, Zhiming
    Chen, Jun
    Li, Xiaoshi
    Zhou, Zhihao
    Meng, Keyu
    Wei, Wei
    Yang, Jin
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (09) : 8830 - 8837
  • [17] Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection
    Cao, Yule
    Guo, Yinben
    Chen, Zixi
    Yang, Weifeng
    Li, Kerui
    He, Xingyu
    Li, Jianmin
    NANO ENERGY, 2022, 92
  • [18] An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator
    Dhakar, Lokesh
    Pitchappa, Prakash
    Tay, Francis Eng Hock
    Lee, Chengkuo
    NANO ENERGY, 2016, 19 : 532 - 540
  • [19] Self-Powered Multifunctional Motion Sensor a, Enabled by Magnetic-Regulated Triboelectric Nanogenerator
    Wu, Zhiyi
    Ding, Wenbo
    Dai, Yejing
    Dong, Kai
    Wu, Changsheng
    Zhang, Lei
    Lin, Zhiming
    Cheng, Jia
    Wang, Zhong Lin
    ACS NANO, 2018, 12 (06) : 5726 - 5733
  • [20] Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring
    Zhang, Binbin
    Zhang, Lei
    Deng, Weili
    Jin, Long
    Chun, Fengjun
    Pan, Hong
    Gu, Bingni
    Zhang, Haitao
    Lv, Zekai
    Yang, Weiqing
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (07) : 7440 - 7446