Existence and persistence of positive solution for a stochastic turbidostat model

被引:1
作者
Li, Zuxiong [1 ,2 ]
Mu, Yu [1 ]
Xiang, Huili [1 ]
Wang, Hailing [1 ,2 ]
机构
[1] Hubei Univ Nationalities, Dept Math, Enshi 445000, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2017年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
turbidostat model; white noise; persistence in mean; stochastic persistence; extinction; BREAK-EVEN CONCENTRATION; VARYING POPULATION-SIZE; PREDATOR-PREY MODEL; CHEMOSTAT MODEL; POLLUTED ENVIRONMENT; EPIDEMIC MODEL; FUNCTIONAL-RESPONSE; COMPETITIVE MODEL; DYNAMICS ANALYSIS; STABILITY;
D O I
10.1186/s13662-017-1448-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel stochastic turbidostat model is investigated in this paper. The stochasticity in the model comes from the maximal growth rate influenced by white noise. Firstly, the existence and uniqueness of the positive solution for the system are demonstrated. Secondly, we analyze the persistence in mean and stochastic persistence of the system, respectively. Sufficient conditions about the extinction of the microorganism are obtained. Finally, numerical simulation results are given to support the theoretical conclusions.
引用
收藏
页数:17
相关论文
共 44 条
  • [31] Coexistence solutions and their stability of an unstirred chemostat model with toxins
    Nie, Hua
    Liu, Na
    Wu, Jianhua
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 20 : 36 - 51
  • [32] Global stability for a model of competition in the chemostat with microbial inputs
    Robledo, Gonzalo
    Grognard, Frederic
    Gouze, Jean-Luc
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 582 - 598
  • [33] Smith HL, 1995, The Theory of the Chemostat: Dynamics of Microbial Competition
  • [34] Temporal autocorrelation and stochastic population growth
    Tuljapurkar, S
    Haridas, CV
    [J]. ECOLOGY LETTERS, 2006, 9 (03) : 324 - 334
  • [35] Wang L, 2016, COMMUN NONLINEAR SCI, V37, P1, DOI [10.1016/j.cnsns.2016.01.002, 10.7687/J.ISSN1003-8868.2016.05.001]
  • [36] Wilkinson D.J., 2006, STOCHASTIC MODELING
  • [37] An analogue of break-even concentration in a simple stochastic chemostat model
    Xu, Chaoqun
    Yuan, Sanling
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 48 : 62 - 68
  • [38] Dynamics of a plasmid chemostat model with periodic nutrient input and delayed nutrient recycling
    Yuan, Sanling
    Zhang, Tonghua
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2104 - 2119
  • [39] Competitive exclusion in a stochastic chemostat model with Holling type II functional response
    Zhang, Qiumei
    Jiang, Daqing
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (03) : 777 - 791
  • [40] Break-even concentration and periodic behavior of a stochastic chemostat model with seasonal fluctuation
    Zhao, Dianli
    Yuan, Sanling
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 : 62 - 73