Existence and persistence of positive solution for a stochastic turbidostat model

被引:1
作者
Li, Zuxiong [1 ,2 ]
Mu, Yu [1 ]
Xiang, Huili [1 ]
Wang, Hailing [1 ,2 ]
机构
[1] Hubei Univ Nationalities, Dept Math, Enshi 445000, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2017年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
turbidostat model; white noise; persistence in mean; stochastic persistence; extinction; BREAK-EVEN CONCENTRATION; VARYING POPULATION-SIZE; PREDATOR-PREY MODEL; CHEMOSTAT MODEL; POLLUTED ENVIRONMENT; EPIDEMIC MODEL; FUNCTIONAL-RESPONSE; COMPETITIVE MODEL; DYNAMICS ANALYSIS; STABILITY;
D O I
10.1186/s13662-017-1448-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel stochastic turbidostat model is investigated in this paper. The stochasticity in the model comes from the maximal growth rate influenced by white noise. Firstly, the existence and uniqueness of the positive solution for the system are demonstrated. Secondly, we analyze the persistence in mean and stochastic persistence of the system, respectively. Sufficient conditions about the extinction of the microorganism are obtained. Finally, numerical simulation results are given to support the theoretical conclusions.
引用
收藏
页数:17
相关论文
共 44 条
  • [1] Stochastic predator-prey model with Allee effect on prey
    Aguirre, Pablo
    Gonzalez-Olivares, Eduardo
    Torres, Soledad
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 768 - 779
  • [2] A comparison of three different stochastic population models with regard to persistence time
    Allen, LJS
    Allen, EJ
    [J]. THEORETICAL POPULATION BIOLOGY, 2003, 64 (04) : 439 - 449
  • [3] [Anonymous], 2011, STOCHASTIC DIFFERENT
  • [4] Stochastic modeling of the chemostat
    Campillo, F.
    Joannides, M.
    Larramendy-Valverde, I.
    [J]. ECOLOGICAL MODELLING, 2011, 222 (15) : 2676 - 2689
  • [5] Approximation of the Fokker-Planck equation of the stochastic chemostat
    Campillo, Fabien
    Joannides, Marc
    Larramendy-Valverde, Irene
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 : 37 - 53
  • [6] Nonlinear stochastic population dynamics:: The Flour Beetle Tribolium as an effective tool of discovery
    Costantino, RF
    Desharnais, RA
    Cushing, JM
    Dennis, B
    Henson, SM
    King, AA
    [J]. ADVANCES IN ECOLOGICAL RESEARCH, VOL. 37: POPULATION DYNAMICS AND LABORATORY ECOLOGY, 2005, 37 : 101 - 141
  • [7] Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses
    Fekih-Salem, R.
    Rapaport, A.
    Sari, T.
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7656 - 7677
  • [8] Probabilistic behavior analysis of a sandwiched buckled beam under Gaussian white noise with energy harvesting perspectives
    Fokou, I. S. Mokem
    Buckjohn, C. Nono Dueyou
    Siewe, M. Siewe
    Tchawoua, C.
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 92 : 101 - 114
  • [9] Breakdown of a chemostat exposed to stochastic noise
    Grasman, J
    de Gee, M
    van Herwaarden, OA
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2005, 53 (3-4) : 291 - 300
  • [10] SDE SIS epidemic model with demographic stochasticity and varying population size
    Greenhalgh, D.
    Liang, Y.
    Mao, X.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 218 - 238