LSTM-Based Real-Time SOC Estimation of Lithium-Ion Batteries Using a Vehicle Driving Simulator

被引:1
|
作者
Kim, Si Jin [1 ]
Lee, Jong Hyun [1 ]
Wang, Dong Hun [1 ]
Lee, In Soo [1 ]
机构
[1] Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 41566, South Korea
关键词
Lithium-ion Battery; State of Charge; LSTM; Vehicle Driving Simulator; Real-Time;
D O I
10.23919/ICCAS52745.2021.9649878
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently, lithium-ion batteries (a type of secondary battery) are used as the primary sources of power in many applications due to their low energy loss as a result of their high energy density and low self-discharge rate, and their ability to store energy for a long time. However, due to the frequent charging and discharging of such batteries, overcharging is inevitable. This can cause system shutdowns, accidents, or property damage due to explosions. Therefore, it is necessary to accurately predict the state of charge (SOC) of batteries for stable and efficient usage. Hence, in this paper, we propose a SOC estimation method using a vehicle driving simulator. After manufacturing the simulator to perform the battery discharge experiment, voltage, current, and discharge-time data were collected. Using the collected data as input parameters for an RNN-based LSTM, we estimated the SOC of the battery and compared the errors to. We then used the developed LSTM surrogate model to conduct discharge experiments and simultaneously estimate the SOC in real-time.
引用
收藏
页码:618 / 622
页数:5
相关论文
共 50 条
  • [21] A Review of SOC Estimation Methods for Lithium-Ion Batteries Based on Electrochemical Model
    Wu L.
    Pang H.
    Jin J.
    Geng Y.
    Liu K.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (07): : 1703 - 1725
  • [22] Improved sliding mode based EKF for the SOC estimation of lithium-ion batteries
    Liang Feng
    Jie Ding
    Yiyang Han
    Ionics, 2020, 26 : 2875 - 2882
  • [23] State-of-charge estimation of lithium-ion batteries using LSTM and UKF
    Yang, Fangfang
    Zhang, Shaohui
    Li, Weihua
    Miao, Qiang
    ENERGY, 2020, 201 (201)
  • [24] LSTM-based estimation of lithium-ion battery SOH using data characteristics and spatio-temporal attention
    Xu, Gengchen
    Xu, Jingyun
    Zhu, Yifan
    PLOS ONE, 2024, 19 (12):
  • [25] Real-Time State of Charge Estimation of Lithium-Ion Batteries Using Optimized Random Forest Regression Algorithm
    Hossain Lipu, M. S.
    Hannan, M. A.
    Hussain, Aini
    Ansari, Shaheer
    Rahman, S. A.
    Saad, Mohamad H. M.
    Muttaqi, K. M.
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 639 - 648
  • [26] SoC Estimation for Lithium-ion Batteries: Review and Future Challenges
    Pablo Rivera-Barrera, Juan
    Munoz-Galeano, Nicolas
    Omar Sarmiento-Maldonado, Henry
    ELECTRONICS, 2017, 6 (04)
  • [27] An Online SOC and SOH Estimation Model for Lithium-Ion Batteries
    Huang, Shyh-Chin
    Tseng, Kuo-Hsin
    Liang, Jin-Wei
    Chang, Chung-Liang
    Pecht, Michael G.
    ENERGIES, 2017, 10 (04):
  • [28] Machine Learning Based SoC Estimation For Lithium-Ion Battery In Electric Vehicle
    Sundararaju, K.
    Jagadeesh, S.
    Madhumithra, N.
    Manikandan, K.
    2023 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS, ICEES, 2023, : 85 - 88
  • [29] A hybrid Kalman filter for SOC estimation of lithium-ion batteries
    Hao, Tianyun
    Ding, Jie
    Tu, Taotao
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5222 - 5227
  • [30] An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
    Zhang, Cheng
    Li, Kang
    Pei, Lei
    Zhu, Chunbo
    JOURNAL OF POWER SOURCES, 2015, 283 : 24 - 36