Well-posedness and stability for a class of stochastic delay differential equations with singular drift

被引:7
作者
Bachmann, Stefan [1 ]
机构
[1] Univ Leipzig, Inst Math, Augustuspl 10, D-04109 Leipzig, Germany
关键词
Stochastic functional differential equation; strong solution; singular drift; Zvonkin's transformation; Krylov's estimate; UNIQUENESS; SDES;
D O I
10.1142/S0219493718500193
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we prove well-posedness and stability of a class of stochastic delay differential equations with singular drift. Moreover, we show local well-posedness under localized assumptions.
引用
收藏
页数:27
相关论文
共 15 条
[1]  
[Anonymous], TRANSLATIONS MATH MO
[2]  
[Anonymous], [No title captured]
[3]   RADEMACHERS THEOREM FOR WIENER FUNCTIONALS [J].
ENCHEV, O ;
STROOCK, DW .
ANNALS OF PROBABILITY, 1993, 21 (01) :25-33
[4]   Pathwise uniqueness and continuous dependence for SDEs with non-regular drift [J].
Fedrizzi, E. ;
Flandoli, F. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2011, 83 (03) :241-257
[5]  
Fedrizzi E., 2009, THESIS
[6]   Flow of diffeomorphisms for SDEs with unbounded Holder continuous drift [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (04) :405-422
[7]   On stochastic differential equations with locally unbounded drift [J].
Gyöngy, I ;
Martínez, T .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) :763-783
[8]   Strong solutions of stochastic equations with singular time dependent drift [J].
Krylov, NV ;
Röckner, M .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (02) :154-196
[9]   A STOCHASTIC GRONWALL LEMMA [J].
Scheutzow, Michael .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 16 (02)
[10]  
Veretennikov A.Y., 1979, TEOR VEROYA PRIMEN, V24, p[348, 354]