Transverse Spin Dynamics in the Anisotropic Heisenberg Model Realized with Ultracold Atoms

被引:52
作者
Jepsen, Paul Niklas [1 ,2 ,3 ]
Ho, Wen Wei [3 ,4 ,5 ]
Amato-Grill, Jesse [1 ,2 ,3 ,6 ]
Dimitrova, Ivana [1 ,2 ,3 ,4 ]
Demler, Eugene [3 ,4 ,7 ]
Ketterle, Wolfgang [1 ,2 ,3 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT Harvard Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] QuEra Comp Inc, Boston, MA 02135 USA
[7] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
关键词
Anisotropy; -; Atoms;
D O I
10.1103/PhysRevX.11.041054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In Heisenberg models with exchange anisotropy, transverse spin components are not conserved and can decay not only by transport, but also by dephasing. Here, we utilize ultracold atoms to simulate the dynamics of 1D Heisenberg spin chains and observe fast, local spin decay controlled by the anisotropy. However, even for isotropic interactions, we observe dephasing due to a new effect: an effective magnetic field created by superexchange. If spatially uniform, it leads only to uniform spin precession and is, therefore, typically ignored. However, we show through experimental studies and extensive numerical simulations how this superexchange-generated field is relevant and leads to additional dephasing mechanisms over the exchange anisotropy: There is dephasing due to (i) inhomogeneity of the effective field from variations of lattice depth between chains; (ii) a twofold reduction of the field at the edges of finite chains; and (iii) fluctuations of the effective field due to the presence of mobile holes in the system. The latter is a new coupling mechanism between holes and magnons. All these dephasing mechanisms have not been observed before with ultracold atoms and illustrate basic properties of the underlying Hubbard model.
引用
收藏
页数:18
相关论文
共 46 条
[1]   Phase diagram of two-component bosons on an optical lattice [J].
Altman, E ;
Hofstetter, W ;
Demler, E ;
Lukin, MD .
NEW JOURNAL OF PHYSICS, 2003, 5 :113.1-113.19
[2]   The physics behind high-temperature superconducting cuprates: the 'plain vanilla' version of RVB [J].
Anderson, PW ;
Lee, PA ;
Randeria, M ;
Rice, TM ;
Trivedi, N ;
Zhang, FC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (24) :R755-R769
[3]  
Auerbach A., 2012, Interacting Electrons and Quantum Magnetism
[4]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[5]   Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions [J].
Babadi, Mehrtash ;
Demler, Eugene ;
Knap, Michael .
PHYSICAL REVIEW X, 2015, 5 (04)
[6]   Finite-temperature transport in one-dimensional quantum lattice models [J].
Bertini, B. ;
Heidrich-Meisner, F. ;
Karrasch, C. ;
Prosen, T. ;
Steinigeweg, R. ;
Znidaric, M. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[7]   Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents [J].
Bertini, Bruno ;
Collura, Mario ;
De Nardis, Jacopo ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2016, 117 (20)
[8]   Universal Prethermal Dynamics in Heisenberg Ferromagnets [J].
Bhattacharyya, Saraswat ;
Rodriguez-Nieva, Joaquin F. ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2020, 125 (23)
[9]   SPIN-GLASSES - EXPERIMENTAL FACTS, THEORETICAL CONCEPTS, AND OPEN QUESTIONS [J].
BINDER, K ;
YOUNG, AP .
REVIEWS OF MODERN PHYSICS, 1986, 58 (04) :801-976
[10]   Two-dimensional superexchange-mediated magnetization dynamics in an optical lattice [J].
Brown, R. C. ;
Wyllie, R. ;
Koller, S. B. ;
Goldschmidt, E. A. ;
Foss-Feig, M. ;
Porto, J. V. .
SCIENCE, 2015, 348 (6234) :540-544