Zero-field edge plasmons in a magnetic topological insulator

被引:41
作者
Mahoney, Alice C. [1 ]
Colless, James I. [1 ,6 ]
Peeters, Lucas [2 ]
Pauka, Sebastian J. [1 ]
Fox, Eli J. [2 ,3 ]
Kou, Xufeng [4 ,7 ]
Pan, Lei [4 ]
Wang, Kang L. [4 ]
Goldhaber-Gordon, David [2 ,3 ]
Reilly, David J. [1 ,5 ]
机构
[1] Univ Sydney, ARC Ctr Excellence Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[4] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[5] Microsoft Stn Q Sydney, Sydney, NSW 2006, Australia
[6] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[7] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
澳大利亚研究理事会;
关键词
LOW-FREQUENCY; HALL; MAGNETOPLASMONS; REALIZATION; STATE;
D O I
10.1038/s41467-017-01984-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Incorporating ferromagnetic dopants into three-dimensional topological insulator thin films has recently led to the realisation of the quantum anomalous Hall effect. These materials are of great interest since they may support electrical currents that flow without resistance, even at zero magnetic field. To date, the quantum anomalous Hall effect has been investigated using low-frequency transport measurements. However, transport results can be difficult to interpret due to the presence of parallel conductive paths, or because additional non-chiral edge channels may exist. Here we move beyond transport measurements by probing the microwave response of a magnetised disk of Cr-(Bi,Sb)(2)Te-3. We identify features associated with chiral edge plasmons, a signature that robust edge channels are intrinsic to this material system. Our results provide a measure of the velocity of edge excitations without contacting the sample, and pave the way for an on-chip circuit element of practical importance: the zero-field microwave circulator.
引用
收藏
页数:7
相关论文
共 32 条
[1]   EDGE MAGNETOPLASMONS IN THE TIME DOMAIN [J].
ASHOORI, RC ;
STORMER, HL ;
PFEIFFER, LN ;
BALDWIN, KW ;
WEST, K .
PHYSICAL REVIEW B, 1992, 45 (07) :3894-3897
[2]   Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field [J].
Bestwick, A. J. ;
Fox, E. J. ;
Kou, Xufeng ;
Pan, Lei ;
Wang, Kang L. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (18)
[3]   Self-Impedance-Matched Hall-Effect Gyrators and Circulators [J].
Bosco, S. ;
Haupt, F. ;
DiVincenzo, D. P. .
PHYSICAL REVIEW APPLIED, 2017, 7 (02)
[4]   Zero-Field Dissipationless Chiral Edge Transport and the Nature of Dissipation in the Quantum Anomalous Hall State [J].
Chang, Cui-Zu ;
Zhao, Weiwei ;
Kim, Duk Y. ;
Wei, Peng ;
Jain, J. K. ;
Liu, Chaoxing ;
Chan, Moses H. W. ;
Moodera, Jagadeesh S. .
PHYSICAL REVIEW LETTERS, 2015, 115 (05)
[5]  
Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/NMAT4204, 10.1038/nmat4204]
[6]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[7]  
Checkelsky JG, 2014, NAT PHYS, V10, P731, DOI [10.1038/nphys3053, 10.1038/NPHYS3053]
[8]   Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator [J].
Feng, Yang ;
Feng, Xiao ;
Ou, Yunbo ;
Wang, Jing ;
Liu, Chang ;
Zhang, Liguo ;
Zhao, Dongyang ;
Jiang, Gaoyuan ;
Zhang, Shou-Cheng ;
He, Ke ;
Ma, Xucun ;
Xue, Qi-Kun ;
Wang, Yayu .
PHYSICAL REVIEW LETTERS, 2015, 115 (12)
[10]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067