Offsets, sweeps, and Minkowski sums

被引:18
|
作者
Elber, G [1 ]
Kim, MS
机构
[1] Technion Israel Inst Technol, IL-32000 Haifa, Israel
[2] Postech, Pohang, South Korea
关键词
D O I
10.1016/S0010-4485(99)00012-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:163 / 163
页数:1
相关论文
共 50 条
  • [1] A computing strategy for applications involving offsets, sweeps, and Minkowski operations
    Hartquist, EE
    Menon, JP
    Suresh, K
    Voelcker, HB
    Zagajac, J
    COMPUTER-AIDED DESIGN, 1999, 31 (03) : 175 - 183
  • [2] Computing strategy for applications involving offsets, sweeps, and Minkowski operations
    Hartquist, E.E.
    Menon, J.P.
    Suresh, K.
    Voelcker, H.B.
    Zagajac, J.
    CAD Computer Aided Design, 1999, 31 (03): : 175 - 183
  • [3] On Minkowski Sums of Simplices
    Geir Agnarsson
    Walter D. Morris
    Annals of Combinatorics, 2009, 13 : 271 - 287
  • [4] On the fatness of Minkowski sums
    de Berg, M
    van der Stappen, AF
    INFORMATION PROCESSING LETTERS, 2002, 81 (05) : 259 - 264
  • [5] MINKOWSKI SUMS AND SYMMETRIZATIONS
    BOURGAIN, J
    LINDENSTRAUSS, J
    MILMAN, VD
    LECTURE NOTES IN MATHEMATICS, 1988, 1317 : 44 - 66
  • [6] On Minkowski Sums of Simplices
    Agnarsson, Geir
    Morris, Walter D.
    ANNALS OF COMBINATORICS, 2009, 13 (03) : 271 - 287
  • [7] CAYLEY SUMS AND MINKOWSKI SUMS OF LATTICE POLYTOPES
    Tsuchiya, Akiyoshi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1348 - 1357
  • [8] Lattice points in Minkowski sums
    Haase, Christian
    Nill, Benjamin
    Paffenholz, Andreas
    Santos, Francisco
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [9] A monotonic convolution for Minkowski sums
    Milenkovic, Victor
    Sacks, Elisha
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2007, 17 (04) : 383 - 396
  • [10] Traveling the boundary of Minkowski sums
    Fekete, SP
    Pulleyblank, WR
    INFORMATION PROCESSING LETTERS, 1998, 66 (04) : 171 - 174