A geometry-attentional network for ALS point cloud classification

被引:80
作者
Li, Wuzhao [1 ]
Wang, Fu-Dong [1 ]
Xia, Gui-Song [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab LIESMARS, Wuhan 430079, Peoples R China
[2] Sch Comp Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; ALS Point clouds; Semantic labelling; Geometry-attentional network; FORM LIDAR DATA; CONTEXTUAL CLASSIFICATION; OBJECT DETECTION; HISTOGRAMS; ALGORITHMS;
D O I
10.1016/j.isprsjprs.2020.03.016
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Airborne Laser Scanning (ALS) point cloud classification is a critical task in remote sensing and photogrammetry communities, which can be widely utilized in urban management, powerline surveying and forest monitoring, etc. In particular, the characteristics of ALS point clouds are distinctive in three aspects, (1) numerous geometric instances (e.g. tracts of roofs); (2) extreme scale variations between different categories (e.g. car v.s. roof); (3) discrepancy distribution along the elevation, which should be specifically focused on for ALS point cloud classification. In this paper, we propose a geometry-attentional network consisting of geometry-aware convolution, dense hierarchical architecture and elevation-attention module to embed the three characteristics effectively, which can be trained in an end-to-end manner. Evaluated on the ISPRS Vaihingen 3D Semantic Labeling benchmark, our method achieves the state-of-the-art performance in terms of average Fl score and overall accuracy (OA). Additionally, without retraining, our model trained on the above Vaihingen 3D dataset can also achieve a better result on the dataset of 2019 IEEE GRSS Data Fusion Contest 3D point cloud classification challenge (DFC 3D) than the baseline (i.e. PointSIFT), which verifies the stronger generalization ability of our model.
引用
收藏
页码:26 / 40
页数:15
相关论文
共 60 条
[21]  
Jiang M., 2018, arXiv
[22]   Using spin images for efficient object recognition in cluttered 3D scenes [J].
Johnson, AE ;
Hebert, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (05) :433-449
[23]  
Kim HB, 2011, INT ARCH PHOTOGRAMM, V38-5, P253
[24]   Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models [J].
Klokov, Roman ;
Lempitsky, Victor .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :863-872
[25]   2019 IEEE GRSS Data Fusion Contest: Large-Scale Semantic 3D Reconstruction [J].
Le Saux, Bertrand ;
Yokoya, Naoto ;
Hansch, Ronny ;
Brown, Myron .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (04) :33-36
[26]  
Li YY, 2018, ADV NEUR IN, V31
[27]   Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation [J].
Liu, Chenxi ;
Chen, Liang-Chieh ;
Schroff, Florian ;
Adam, Hartwig ;
Hua, Wei ;
Yuille, Alan ;
Li Fei-Fei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :82-92
[28]   Relation-Shape Convolutional Neural Network for Point Cloud Analysis [J].
Liu, Yongcheng ;
Fan, Bin ;
Xiang, Shiming ;
Pan, Chunhong .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8887-8896
[29]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[30]   Relevance assessment of full-waveform lidar data for urban area classification [J].
Mallet, Clement ;
Bretar, Frederic ;
Roux, Michel ;
Soergel, Uwe ;
Heipke, Christian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (06) :S71-S84