ON PROJECTIVE EQUIVALENCE AND POINTWISE PROJECTIVE RELATION OF RANDERS METRICS

被引:10
作者
Matveev, Vladimir S. [1 ]
机构
[1] Univ Jena, Inst Math, D-07737 Jena, Germany
关键词
Finsler metrics; Randers metrics; projective equivalence; pointwise projective relation; projective transformations; LICHNEROWICZ-OBATA CONJECTURE;
D O I
10.1142/S0129167X12500930
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that projective equivalence of two Randers Finsler metrics F = root g(xi, xi) + omega(xi) and (F) over bar = root(g) over bar(xi, xi) + (omega) over bar(xi) such that at least one of the one-forms omega and (omega) over bar is not closed implies that for a certain constant C > 0 we have g = C-2 . (g) over bar and the form omega-C . (omega) over bar is closed. As an application we prove the natural generalization of the projective Lichnerowicz-Obata conjecture for Randers metrics.
引用
收藏
页数:14
相关论文
共 20 条
[1]  
[Anonymous], 1986, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
[2]  
Beltrami Eugenio, 1865, RISOLUZIONE PROBLEMA
[3]  
Burns K, 2006, P AM MATH SOC, V134, P427
[4]  
Caponio E, 2011, REV MAT IBEROAM, V27, P919
[5]   On the energy functional on Finsler manifolds and applications to stationary spacetimes [J].
Caponio, Erasmo ;
Angel Javaloyes, Miguel ;
Masiello, Antonio .
MATHEMATISCHE ANNALEN, 2011, 351 (02) :365-392
[6]   Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric [J].
Caponio, Erasmo ;
Angel Javaloyes, Miguel ;
Masiello, Antonio .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (03) :857-876
[7]  
Lagrange J.-L., 1779, NOVEAUX MEMOIRES ACA, P637
[8]  
Levi-Civita T., 1896, Ann. Mat., V24, P255, DOI DOI 10.1007/BF02419530
[9]  
Matveev V. S., 2011, P 6 INT M LOR GEOM G
[10]  
Matveev V. S., 2004, DOKL AKAD NAUK, V396, P25