Kosterlitz-Thouless scaling at many-body localization phase transitions

被引:104
作者
Dumitrescu, Philipp T. [1 ]
Goremykina, Anna [2 ,3 ]
Parameswaran, Siddharth A. [4 ]
Serbyn, Maksym [3 ]
Vasseur, Romain [5 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
[3] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[4] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Clarendon Lab, Oxford OX1 3PU, England
[5] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
STATISTICAL-MECHANICS; QUANTUM; SYSTEM; THERMALIZATION; DIFFUSION; FERMIONS; ABSENCE; PHYSICS; CHAOS;
D O I
10.1103/PhysRevB.99.094205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a "quantum avalanche." We argue that the critical properties can be captured at a coarse-grained level by a Kosterlitz-Thouless (KT) renormalization group (RG) flow. On phenomenological grounds, we identify the scaling variables as the density of thermal regions and the length scale that controls the decay of typical matrix elements. Within this KT picture, the MBL phase is a line of fixed points that terminates at the delocalization transition. We discuss two possible scenarios distinguished by the distribution of rare, fractal thermal inclusions within the MBL phase. In the first scenario, these regions have a stretched exponential distribution in the MBL phase. In the second scenario, the near-critical MBL phase hosts rare thermal regions that are power-law-distributed in size. This points to the existence of a second transition within the MBL phase, at which these power laws change to the stretched exponential form expected at strong disorder. We numerically simulate two different phenomenological RGs previously proposed to describe the MBL transition. Both RGs display a universal power-law length distribution of thermal regions at the transition with a critical exponent alpha(c) = 2, and continuously varying exponents in the MBL phase consistent with the KT picture.
引用
收藏
页数:16
相关论文
共 80 条
[1]  
Abanin D. A., ARXIV180411065
[2]   Rare-region effects and dynamics near the many-body localization transition [J].
Agarwal, Kartiek ;
Altman, Ehud ;
Demler, Eugene ;
Gopalakrishnan, Sarang ;
Huse, David A. ;
Knap, Michael .
ANNALEN DER PHYSIK, 2017, 529 (07)
[3]   Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition [J].
Agarwal, Kartiek ;
Gopalakrishnan, Sarang ;
Knap, Michael ;
Mueller, Markus ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2015, 114 (16)
[4]   Superfluid-insulator transition of disordered bosons in one dimension [J].
Altman, Ehud ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Refael, Gil .
PHYSICAL REVIEW B, 2010, 81 (17)
[5]   Quasiparticle lifetime in a finite system: A nonperturbative approach [J].
Altshuler, BL ;
Gefen, Y ;
Kamenev, A ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2803-2806
[6]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[7]  
[Anonymous], ARXIV14051471
[8]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[9]   Absence of Diffusion in an Interacting System of Spinless Fermions on a One-Dimensional Disordered Lattice [J].
Bar Lev, Yevgeny ;
Cohen, Guy ;
Reichman, David R. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[10]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205