Third-Generation Vaccines: Features of Nucleic Acid Vaccines and Strategies to Improve Their Efficiency

被引:20
作者
da Silva Melo, Alanne Rayssa [1 ]
de Macedo, Larissa Silva [1 ]
Invencao, Maria da Conceicao Viana [1 ]
de Moura, Ingrid Andressa [1 ]
da Gama, Marco Antonio Turiah Machado [1 ]
de Melo, Cristiane Moutinho Lagos [2 ]
Silva, Anna Jessica Duarte [1 ]
de Aragao Batista, Marcus Vinicius [3 ]
de Freitas, Antonio Carlos [1 ]
机构
[1] Univ Fed Pernambuco, Dept Genet, Lab Mol Studies & Expt Therapy, LEMTE, BR-50670901 Recife, Brazil
[2] Univ Fed Pernambuco, Biosci Ctr, Dept Antibiot, Lab Immunol & Antitumor Anal, BR-50670901 Recife, Brazil
[3] Univ Fed Sergipe, Ctr Biol & Hlth Sci, Dept Biol, Lab Mol Genet & Biotechnol GMBio, BR-49100000 Sao Cristovao, Brazil
关键词
vaccines; nucleic acids; synthetic genes; adjuvants; T-CELL RESPONSES; DNA VACCINE; IMMUNE-RESPONSES; DENDRITIC CELLS; MOLECULAR ADJUVANTS; CODON OPTIMIZATION; RNA; IMMUNOGENICITY; VIRUS; ELECTROPORATION;
D O I
10.3390/genes13122287
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene immunization comprises mRNA and DNA vaccines, which stand out due to their simple design, maintenance, and high efficacy. Several studies indicate promising results in preclinical and clinical trials regarding immunization against ebola, human immunodeficiency virus (HIV), influenza, and human papillomavirus (HPV). The efficiency of nucleic acid vaccines has been highlighted in the fight against COVID-19 with unprecedented approval of their use in humans. However, their low intrinsic immunogenicity points to the need to use strategies capable of overcoming this characteristic and increasing the efficiency of vaccine campaigns. These strategies include the improvement of the epitopes' presentation to the system via MHC, the evaluation of immunodominant epitopes with high coverage against emerging viral subtypes, the use of adjuvants that enhance immunogenicity, and the increase in the efficiency of vaccine transfection. In this review, we provide updates regarding some characteristics, construction, and improvement of such vaccines, especially about the production of synthetic multi-epitope genes, widely employed in the current gene-based vaccines.
引用
收藏
页数:14
相关论文
共 83 条
[1]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[2]   The clinical progress of mRNA vaccines and immunotherapies [J].
Barbier, Ann J. ;
Jiang, Allen Yujie ;
Zhang, Peng ;
Wooster, Richard ;
Anderson, Daniel G. .
NATURE BIOTECHNOLOGY, 2022, 40 (06) :840-854
[3]   mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer [J].
Cafri, Gal ;
Gartner, Jared J. ;
Zaks, Tal ;
Hopson, Kristen ;
Levin, Noam ;
Paria, Biman C. ;
Parkhurst, Maria R. ;
Yossef, Rami ;
Lowery, Frank J. ;
Jafferji, Mohammad S. ;
Prickett, Todd D. ;
Goff, Stephanie L. ;
McGowan, Christine T. ;
Seitter, Samantha ;
Shindorf, Mackenzie L. ;
Parikh, Anup ;
Chatani, Praveen D. ;
Robbins, Paul F. ;
Rosenberg, Steven A. .
JOURNAL OF CLINICAL INVESTIGATION, 2020, 130 (11) :5976-5988
[4]   Gene etectro-transfer improves transduction by modifying the fate of intramuscutar DNA [J].
Cappelletti, M ;
Zampaglione, I ;
Rizzuto, G ;
Ciliberto, G ;
La Monica, N ;
Fattori, E .
JOURNAL OF GENE MEDICINE, 2003, 5 (04) :324-332
[5]   Safety and immunogenicity of investigational seasonal influenza hemagglutinin DNA vaccine followed by trivalent inactivated vaccine administered intradermally or intramuscularly in healthy adults: An open-label randomized phase 1 clinical trial [J].
Carter, Cristina ;
Houser, Katherine, V ;
Yamshchikov, Galina, V ;
Bellamy, Abbie R. ;
May, Jeanine ;
Enama, Mary E. ;
Sarwar, Uzma ;
Larkin, Brenda ;
Bailer, Robert T. ;
Koup, Richard ;
Chen, Grace L. ;
Patel, Shital M. ;
Winokur, Patricia ;
Belshe, Robert ;
Dekker, Cornelia L. ;
Graham, Barney S. ;
Ledgerwood, Julie E. .
PLOS ONE, 2019, 14 (09)
[6]   Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose [J].
Chahal, Jasdave S. ;
Khan, Omar F. ;
Cooper, Christopher L. ;
McPartlan, Justine S. ;
Tsosie, Jonathan K. ;
Tilley, Lucas D. ;
Sidik, Saima M. ;
Lourido, Sebastian ;
Langer, Robert ;
Bavari, Sina ;
Ploegh, Hidde L. ;
Anderson, Daniel G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (29) :E4133-E4142
[7]   Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation [J].
Diken, M. ;
Kreiter, S. ;
Selmi, A. ;
Britten, C. M. ;
Huber, C. ;
Tuereci, O. ;
Sahin, U. .
GENE THERAPY, 2011, 18 (07) :702-708
[8]   Decelerated degradation of short peptides by the 20S proteasome [J].
Dolenc, I ;
Seemüller, E ;
Baumeister, W .
FEBS LETTERS, 1998, 434 (03) :357-361
[9]   Designing the Next Generation of Vaccines: Relevance for Future Pandemics [J].
Dominguez-Andres, Jorge ;
van Crevel, Reinout ;
Divangahi, Maziar ;
Netea, Mihai G. .
MBIO, 2020, 11 (06) :1-16
[10]   Methods to improve the immunogenicity of plasmid DNA vaccines [J].
Eusebio, Dalinda ;
Neves, Ana R. ;
Costa, Diana ;
Biswas, Swati ;
Alves, Gilberto ;
Cui, Zhengrong ;
Sousa, Angela .
DRUG DISCOVERY TODAY, 2021, 26 (11) :2575-2592