Insights into the Impact of Activators on the 'Catalytic' Graphitization to Design Anode Materials for Lithium Ion Batteries

被引:9
作者
Hanhart, Vanessa [1 ]
Frankenstein, Lars [1 ]
Ramirez-Rico, Joaquin [2 ,3 ]
Siozios, Vassilios [1 ]
Winter, Martin [1 ,4 ]
Gomez-Martin, Aurora [1 ]
Placke, Tobias [1 ]
机构
[1] Univ Munster, MEET Battery Res Ctr, Inst Phys Chem, Corrensstr 46, D-48149 Munster, Germany
[2] Univ Seville, CSIC, Dept Fis Mat Condensada, Ave Reina Mercedes SN, E-41012 Seville, Spain
[3] Univ Seville, CSIC, Inst Ciencia Mat Sevilla, Ave Reina Mercedes SN, E-41012 Seville, Spain
[4] Forschungszentrum Julich, Helmholtz Inst Munster, IEK 12, Corrensstr 46, D-48149 Munster, Germany
关键词
activator; anode material; carbonization; 'catalytic' graphitization; lithium ion batteries; X-RAY-DIFFRACTION; SUSTAINABLE CONVERSION; RAMAN-SPECTRA; SURFACE-AREA; HIGH-PURITY; GRAPHITE; CARBON; PERFORMANCE; TEMPERATURE; BIOMASS;
D O I
10.1002/celc.202200819
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we systematically investigate the 'catalytic' graphitization of a biomass precursor (coffee ground) using 10-60 wt.% of the activator iron (III) chloride hexahydrate in a temperature range of 1000 degrees C-2400 degrees C. Special focus is put on the correlation of synthesis conditions, e.g., heat treatment temperature and mass fraction of iron chloride, with the electrochemical performance in carbon vertical bar vertical bar Li metal cells. The structural investigations of the materials reveal a positive impact of an increasing heat treatment temperature and/or mass fraction of inserted activator on the degree of graphitization and the delithiation capacity. However, a saturation point regarding the maximum degree of graphitization at 2000 degrees C and reversible capacity by the 'catalytic' graphitization approach using iron (III) chloride has been found. A maximum degree of graphitization of approximate to 69% could be reached by applying 2000 degrees C and 40 wt.% FeCl3 center dot 6H(2)O, resulting in a reversible capacity of 235 mAh g(-1).
引用
收藏
页数:12
相关论文
共 69 条
  • [1] Lithium-ion batteries - Current state of the art and anticipated developments
    Armand, Michel
    Axmann, Peter
    Bresser, Dominic
    Copley, Mark
    Edstrom, Kristina
    Ekberg, Christian
    Guyomard, Dominique
    Lestriez, Bernard
    Novak, Petr
    Petranikova, Martina
    Porcher, Willy
    Trabesinger, Sigita
    Wohlfahrt-Mehrens, Margret
    Zhang, Heng
    [J]. JOURNAL OF POWER SOURCES, 2020, 479
  • [2] The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites
    Asenbauer, Jakob
    Eisenmann, Tobias
    Kuenzel, Matthias
    Kazzazi, Arefeh
    Chen, Zhen
    Bresser, Dominic
    [J]. SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) : 5387 - 5416
  • [3] Sustainable conversion of biomass to rationally designed lithium-ion battery graphite
    Banek, Nathan A.
    McKenzie, Kevin R.
    Abele, Dustin T.
    Wagner, Michael J.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Sustainable Conversion of Lignocellulose to High-Purity, Highly Crystalline Flake Potato Graphite
    Banek, Nathan A.
    Abele, Dustin T.
    McKenzie, Kevin R., Jr.
    Wagner, Michael J.
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (10): : 13199 - 13207
  • [5] General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy
    Cançado, LG
    Takai, K
    Enoki, T
    Endo, M
    Kim, YA
    Mizusaki, H
    Jorio, A
    Coelho, LN
    Magalhaes-Paniago, R
    Pimenta, MA
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [6] Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries
    Cekic-Laskovic, Isidora
    von Aspern, Natascha
    Imholt, Laura
    Kaymaksiz, Serife
    Oldiges, Kristina
    Rad, Babak Razaei
    Winter, Martin
    [J]. TOPICS IN CURRENT CHEMISTRY, 2017, 375 (02)
  • [7] Clark J., 2020, WEBINAR 7 DECEMBER 2
  • [8] Dolega P., 2020, SHORT STUDY PREPARED
  • [9] Dolega P., 2021, POLICY BRIEF
  • [10] Toward Green Battery Cells: Perspective on Materials and Technologies
    Duehnen, Simon
    Betz, Johannes
    Kolek, Martin
    Schmuch, Richard
    Winter, Martin
    Placke, Tobias
    [J]. SMALL METHODS, 2020, 4 (07):