ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR LINEAR EVOLUTIONARY BOUNDARY VALUE PROBLEM OF VISCOELASTIC DAMPED WAVE EQUATION

被引:2
作者
Berbiche, Mohamed [1 ]
机构
[1] Univ Med Khider, Dept Math, POB 145, Biskra 07000, Algeria
来源
MATHEMATICA BOHEMICA | 2020年 / 145卷 / 02期
关键词
global existence; uniqueness; uniform stabilization; ENERGY DECAY; ELECTROMAGNETIC SYSTEMS; MEMORY; STABILITY; THERMODYNAMICS; STABILIZATION; CONVERGENCE;
D O I
10.21136/MB.2019.0054-18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.
引用
收藏
页码:205 / 223
页数:19
相关论文
共 28 条
[21]   General decay of the solution energy in a viscoelastic equation with a nonlinear source [J].
Messaoudi, Salim A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2589-2598
[22]  
Nicaise S, 2006, ASYMPTOTIC ANAL, V50, P31
[23]   Decay rate estimates for wave equations of memory type with acoustic boundary conditions [J].
Park, Jong Yeoul ;
Park, Sun Hye .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :993-998
[24]  
Pata V., 2001, Adv. Math. Sci., V11, P505
[25]   Asymptotic behaviour of the energy for electromagnetic systems with memory [J].
Rivera, JEM ;
Naso, MG ;
Vuk, E .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (07) :819-841
[26]   General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions [J].
Wu, Shun-Tang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (01) :65-106
[27]   Stability of Global Bounded Solutions to a Nonautonomous Nonlinear Second Order Integro-Differential Equation [J].
Yassine, Hassan .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (01) :83-99
[28]  
Zacher R, 2009, ADV DIFFERENTIAL EQU, V14, P749