A PHYSICAL MODEL OF THE TROMBONE USING DYNAMIC GRIDS FOR FINITE-DIFFERENCE SCHEMES

被引:0
|
作者
Willemsen, Silvin [1 ]
Bilbao, Stefan [2 ]
Ducceschi, Michele [2 ]
Serafin, Stefania [1 ]
机构
[1] Aalborg Univ, Multisensory Experience Lab, Copenhagen, Denmark
[2] Univ Edinburgh, Acoust & Audio Grp, Edinburgh, Midlothian, Scotland
关键词
PROPAGATION; WAVES;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, a complete simulation of a trombone using finitedifference time-domain (FDTD) methods is proposed. In particular, we propose the use of a novel method to dynamically vary the number of grid points associated to the FDTD method, to simulate the fact that the physical dimension of the trombone's resonator dynamically varies over time. We describe the different elements of the model and present the results of a real-time simulation.
引用
收藏
页码:152 / 159
页数:8
相关论文
共 50 条
  • [1] DYNAMIC GRIDS FOR FINITE-DIFFERENCE SCHEMES IN MUSICAL INSTRUMENT SIMULATIONS
    Willemsen, Silvin
    Bilbao, Stefan
    Ducceschi, Michele
    Serafin, Stefania
    2021 24TH INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS (DAFX), 2021, : 144 - 151
  • [2] FINITE-DIFFERENCE SCHEMES ON REGULAR TRIANGULAR GRIDS
    ZINGG, DW
    LOMAX, H
    JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (02) : 306 - 313
  • [3] ON THE RATE OF CONVERGENCE OF FINITE-DIFFERENCE SCHEMES ON NONUNIFORM GRIDS
    DEHOOG, F
    JACKETT, D
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 26 (JAN): : 247 - 256
  • [4] EFFICIENT UPWIND FINITE-DIFFERENCE SCHEMES FOR WAVE EQUATIONS ON OVERSET GRIDS
    Angel, J. B.
    Banks, J. W.
    Carson, A. M.
    Henshaw, W. D.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (05): : A2703 - A2724
  • [5] GENERALIZED FINITE-DIFFERENCE SCHEMES
    SWARTZ, B
    WENDROFF, B
    MATHEMATICS OF COMPUTATION, 1969, 23 (105) : 37 - &
  • [6] THE CONSERVATISM OF FINITE-DIFFERENCE SCHEMES
    OSTAPENKO, VV
    DOKLADY AKADEMII NAUK SSSR, 1985, 284 (01): : 47 - 50
  • [7] OPERATIONAL FINITE-DIFFERENCE SCHEMES
    SAMARSKII, AA
    TISHKIN, VF
    FAVORSKII, AP
    SHASHKOV, MY
    DIFFERENTIAL EQUATIONS, 1981, 17 (07) : 854 - 862
  • [8] FINITE-DIFFERENCE SCHEMES ON TRIANGULAR CELL-CENTERED GRIDS WITH LOCAL REFINEMENT
    VASSILEVSKI, PS
    PETROVA, SI
    LAZAROV, RD
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (06): : 1287 - 1313
  • [9] Finite-difference schemes on adaptive time grids for parabolic equations with generalized solutions
    Samarskii, AA
    Iovanovich, BS
    Matus, PP
    Shcheglik, VS
    DIFFERENTIAL EQUATIONS, 1997, 33 (07) : 981 - 990
  • [10] Third-order finite-difference schemes on icosahedral-type grids on the sphere
    Steppeler, J.
    Ripodas, P.
    Jonkheid, B.
    Thomas, S.
    MONTHLY WEATHER REVIEW, 2008, 136 (07) : 2683 - 2698