False discovery rates for large-scale model checking under certain dependence

被引:0
作者
Deng, Lu [1 ,2 ]
Zi, Xuemin [3 ]
Li, Zhonghua [1 ,2 ]
机构
[1] Nankai Univ, Inst Stat, Tianjin, Peoples R China
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
[3] Tianjin Univ Technol & Educ, Sch Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
False discovery rate; Model checking; Multiple hypotheses testing; Weak dependence; SELECTION;
D O I
10.1080/03610926.2017.1300279
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many scientific fields, it is interesting and important to determine whether an observed data stream comes from a prespecified model or not, particularly when the number of data streams is of large scale, where multiple hypotheses testing is necessary. In this article, we consider large-scale model checking under certain dependence among different data streams observed at the same time. We propose a false discovery rate (FDR) control procedure to check those unusual data streams. Specifically, we derive an approximation of false discovery and construct a point estimate of FDR. Theoretical results show that, under some mild assumptions, our proposed estimate of FDR is simultaneously conservatively consistent with the true FDR, and hence it is an asymptotically strong control procedure. Simulation comparisons with some competing procedures show that our proposed FDR procedure behaves better in general settings. Application of our proposed FDR procedure is illustrated by the StarPlus fMRI data.
引用
收藏
页码:64 / 79
页数:16
相关论文
共 50 条
  • [21] Large-scale covariate-assisted two-sample inference under dependence
    Wang, Pengfei
    Zhu, Wensheng
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1421 - 1447
  • [22] Control of the false discovery rate under dependence using the bootstrap and subsampling
    Romano, Joseph P.
    Shaikh, Azeem M.
    Wolf, Michael
    TEST, 2008, 17 (03) : 417 - 442
  • [23] Application of large-scale sequencing to marker discovery in plants
    Henry, Robert J.
    Edwards, Mark
    Waters, Daniel L. E.
    Krishnan, Gopala S.
    Bundock, Peter
    Sexton, Timothy R.
    Masouleh, Ardashir K.
    Nock, Catherine J.
    Pattemore, Julie
    JOURNAL OF BIOSCIENCES, 2012, 37 (05) : 829 - 841
  • [24] An Effective Method for Controlling False Discovery and False Nondiscovery Rates in Genome-Scale RNAi Screens
    Zhang, Xiaohua Douglas
    JOURNAL OF BIOMOLECULAR SCREENING, 2010, 15 (09) : 1116 - 1122
  • [25] Rejoinder on: Control of the false discovery rate under dependence using the bootstrap and subsampling
    Romano J.P.
    Shaikh A.M.
    Wolf M.
    TEST, 2008, 17 (3) : 461 - 471
  • [26] Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling
    Wenge Guo
    TEST, 2008, 17 : 446 - 449
  • [27] Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling
    Troendle J.F.
    TEST, 2008, 17 (3) : 456 - 457
  • [28] False Discovery Rate Control Under General Dependence By Symmetrized Data Aggregation
    Du, Lilun
    Guo, Xu
    Sun, Wenguang
    Zou, Changliang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 607 - 621
  • [29] Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling
    Sarkar S.K.
    Heller R.
    TEST, 2008, 17 (3) : 450 - 455
  • [30] The Use of SSMD-Based False Discovery and False Nondiscovery Rates in Genome-Scale RNAi Screens
    Zhang, Xiaohua Douglas
    Lacson, Raul
    Yang, Ruojing
    Marine, Shane D.
    McCampbell, Alex
    Toolan, Dawn M.
    Hare, Tim R.
    Kajdas, Joleen
    Berger, Joel P.
    Holder, Daniel J.
    Heyse, Joseph F.
    Ferrer, Marc
    JOURNAL OF BIOMOLECULAR SCREENING, 2010, 15 (09) : 1123 - 1131