On Galois structure invariants associated to Tate motives

被引:41
作者
Burns, D
Flach, M
机构
[1] Univ London Kings Coll, Dept Math, London WC2R 2LS, England
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
关键词
D O I
10.1353/ajm.1998.0047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the equivalence of two definitions of invariants measuring the Galois module structure of K-groups of rings of integers in number fields (due to Chinburg et al. on the one hand and the authors on the other). We also make some remarks concerning the possibility of yet another such definition via Lichtenbaum complexes.
引用
收藏
页码:1343 / 1397
页数:55
相关论文
共 26 条
[1]  
[Anonymous], 1993, K-THEORY
[2]  
[Anonymous], 1990, GROTHENDIECK FESTSCH
[3]  
BLOCH S, 1990, PROG MATH, V86, P333
[4]  
BROWN KS, 1982, GRADUATE TEXTS MATH, V87
[5]   Motivic L-functions and Galois module structures [J].
Burns, D ;
Flach, M .
MATHEMATISCHE ANNALEN, 1996, 305 (01) :65-102
[6]  
BURNS D, UNPUB EQUIVARIANT TA, V2
[7]  
BURNS D, 1997, IWASAWA THEORY P ADI, V1
[8]  
CHINBURG T, 1995, CR ACAD SCI I-MATH, V320, P1435
[9]   EXACT SEQUENCES AND GALOIS MODULE STRUCTURE [J].
CHINBURG, T .
ANNALS OF MATHEMATICS, 1985, 121 (02) :351-376
[10]   GALOIS STRUCTURE OF DERHAM COHOMOLOGY OF TAME COVERS OF SCHEMES [J].
CHINBURG, T .
ANNALS OF MATHEMATICS, 1994, 139 (02) :443-490