Escape kinetics of self-propelled particles from a circular cavity

被引:28
作者
Debnath, Tanwi [1 ]
Chaudhury, Pinaki [1 ]
Mukherjee, Taritra [2 ]
Mondal, Debasish [3 ,4 ]
Ghosh, Pulak K. [2 ]
机构
[1] Univ Calcutta, Dept Chem, Kolkata 700009, India
[2] Presidency Univ, Dept Chem, Kolkata 700073, India
[3] Indian Inst Technol Tirupati, Dept Chem, Yerpedu 517619, Andhra Pradesh, India
[4] Indian Inst Technol Tirupati, Ctr Mol & Opt Sci & Technol, Yerpedu 517619, Andhra Pradesh, India
关键词
1ST PASSAGE; DIFFUSION; TRANSPORT;
D O I
10.1063/5.0070842
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We numerically investigate the mean exit time of an inertial active Brownian particle from a circular cavity with single or multiple exit windows. Our simulation results witness distinct escape mechanisms depending on the relative amplitudes of the thermal length and self-propulsion length compared to the cavity and pore sizes. For exceedingly large self-propulsion lengths, overdamped active particles diffuse on the cavity surface, and rotational dynamics solely governs the exit process. On the other hand, the escape kinetics of a very weakly damped active particle is largely dictated by bouncing effects on the cavity walls irrespective of the amplitude of self-propulsion persistence lengths. We show that the exit rate can be maximized for an optimal self-propulsion persistence length, which depends on the damping strength, self-propulsion velocity, and cavity size. However, the optimal persistence length is insensitive to the opening windows' size, number, and arrangement. Numerical results have been interpreted analytically based on qualitative arguments. The present analysis aims at understanding the transport controlling mechanism of active matter in confined structures.
引用
收藏
页数:12
相关论文
共 69 条
[1]   Active Brownian motion in a narrow channel [J].
Ao, X. ;
Ghosh, P. K. ;
Li, Y. ;
Schmid, G. ;
Haenggi, P. ;
Marchesoni, F. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (14) :3227-3242
[2]   Quantum Kramers equation for energy diffusion and barrier crossing dynamics in the low-friction regime [J].
Banerjee, D ;
Banik, SK ;
Bag, BC ;
Ray, DS .
PHYSICAL REVIEW E, 2002, 66 (05) :20
[3]   Active Particles in Complex and Crowded Environments [J].
Bechinger, Clemens ;
Di Leonardo, Roberto ;
Loewen, Hartmut ;
Reichhardt, Charles ;
Volpe, Giorgio ;
Volpe, Giovanni .
REVIEWS OF MODERN PHYSICS, 2016, 88 (04)
[4]   First passage of an active particle in the presence of passive crowders [J].
Biswas, Animesh ;
Cruz, J. M. ;
Parmananda, P. ;
Das, Dibyendu .
SOFT MATTER, 2020, 16 (26) :6138-6144
[5]   Analytical estimates of free Brownian diffusion times in corrugated narrow channels [J].
Bosi, Leone ;
Ghosh, Pulak K. ;
Marchesoni, Fabio .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (17)
[6]   Entropic stochastic resonance [J].
Burada, P. S. ;
Schmid, G. ;
Reguera, D. ;
Vainstein, M. H. ;
Rubi, J. M. ;
Haenggi, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (13)
[7]   Diffusion in Confined Geometries [J].
Burada, P. Sekhar ;
Haenggi, Peter ;
Marchesoni, Fabio ;
Schmid, Gerhard ;
Talkner, Peter .
CHEMPHYSCHEM, 2009, 10 (01) :45-54
[8]   Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles [J].
Buttinoni, Ivo ;
Bialke, Julian ;
Kuemmel, Felix ;
Loewen, Hartmut ;
Bechinger, Clemens ;
Speck, Thomas .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[9]   Transport of active particles in an open-wedge channel [J].
Caprini, Lorenzo ;
Cecconi, Fabio ;
Marconi, Umberto Marini Bettolo .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (14)
[10]   Active escape dynamics: The effect of persistence on barrier crossing [J].
Caprini, Lorenzo ;
Marconi, Umberto Marini Bettolo ;
Puglisi, Andrea ;
Vulpiani, Angelo .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (02)