Particle Swarm Optimization for Cooperative Multi-Robot Task Allocation: A Multi-Objective Approach

被引:80
|
作者
Wei, Changyun [1 ]
Ji, Ze [2 ]
Cai, Boliang [1 ]
机构
[1] Hohai Univ, Coll Mech & Elect Engn, Changzhou 213022, Jiangsu, Peoples R China
[2] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, Wales
基金
中国国家自然科学基金;
关键词
Multi-robot systems; optimization and optimal control; cooperating robots; TRAVELING SALESMAN PROBLEM; ALGORITHM; PSO; ACO;
D O I
10.1109/LRA.2020.2972894
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter presents a new Multi-Objective Particle Swarm Optimization (MOPSO) approach to a Cooperative Multi-Robot Task Allocation (CMRTA) problem, where the robots have to minimize the total team cost and, additionally, balance their workloads. We formulate the CMRTA problem as a more complex variant of multiple Travelling Salesman Problems (mTSP) and, in particular, address how to minimize the total travel distance of the entire robot team, as well as how to minimize the highest travel distance of an individual robot. The proposed approach extends the standard single-objective Particle Swarm Optimization (PSO) to cope with the multiple objectives, and its novel feature lies in a Pareto front refinement strategy and a probability-based leader selection strategy. To validate the proposed approach, we first use three benchmark functions to evaluate the performance of finding the true Pareto fronts in comparison with four existing well-known algorithms in continuous spaces. Afterwards, we use six datasets to investigate the task allocation mechanisms in dealing with the CMRTA problem in discrete spaces.
引用
收藏
页码:2530 / 2537
页数:8
相关论文
共 50 条
  • [1] Multi-Robot Path Planning Based on Multi-Objective Particle Swarm Optimization
    Thabit, Sahib
    Mohades, Ali
    IEEE ACCESS, 2019, 7 : 2138 - 2147
  • [2] Cooperative Task Allocation for Multi-Robot Systems Based on Multi-Objective Ant Colony System
    Wang, Shengli
    Liu, Youjiang
    Qiu, Yongtao
    Zhang, Qi
    Huo, Feixiang
    Huangfu, Yafan
    Yang, Chun
    Zhou, Jie
    IEEE ACCESS, 2022, 10 : 56375 - 56387
  • [3] Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer
    Zhang, Yong
    Gong, Dun-wei
    Ding, Zhong-hai
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (11) : 13933 - 13941
  • [4] Particle Swarm Optimization for Feature Selection in Classification: A Multi-Objective Approach
    Xue, Bing
    Zhang, Mengjie
    Browne, Will N.
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 1656 - 1671
  • [5] Multi-objective path optimization for arc welding robot based on discrete DN multi-objective particle swarm optimization
    Wang Xue-Wu
    Min Yong
    Gu Xing-sheng
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2019, 16 (06):
  • [6] Multi-objective based Cloud Task Scheduling Model with Improved Particle Swarm Optimization
    Udatha, Chaitanya
    Lakshmeeswari, Gondi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (12) : 243 - 248
  • [7] An Improved Particle Swarm Optimization for Multi-Robot Path Planning
    Das, P. K.
    Sahoo, B. M.
    Behera, H. S.
    Vashisht, S.
    2016 1ST INTERNATIONAL CONFERENCE ON INNOVATION AND CHALLENGES IN CYBER SECURITY (ICICCS 2016), 2016, : 97 - 106
  • [8] Multi-Objective Optimization Problems Using Cooperative Evolvement Particle Swarm Optimizer
    Zhang, Yong
    Gong, Dun-Wei
    Gong, Na
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 655 - 663
  • [9] An Efficient Algorithm of Discrete Particle Swarm Optimization for Multi-Objective Task Assignment
    Qiao, Nannan
    You, Jiali
    Sheng, Yiqiang
    Wang, Jinlin
    Deng, Haojiang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (12): : 2968 - 2977
  • [10] Multi-objective robot motion planning using a particle swarm optimization model
    Masehian, Ellips
    Sedighizadeh, Davoud
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2010, 11 (08): : 607 - 619