Scalable Graph-Based Semi-Supervised Learning through Sparse Bayesian Model

被引:50
|
作者
Jiang, Bingbing [1 ]
Chen, Huanhuan [1 ]
Yuan, Bo [2 ]
Yao, Xin [2 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Anhui, Peoples R China
[2] Southern Univ Sci & Technol SUSTech, Shenzhen Key Lab Computat Intelligence, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; graph-based methods; sparse Bayesian model; incremental learning; large-scale data sets; CLASSIFICATION; ROBUSTNESS;
D O I
10.1109/TKDE.2017.2749574
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning (SSL) concerns the problem of how to improve classifiers' performance through making use of prior knowledge from unlabeled data. Many SSL methods have been developed to integrate unlabeled data into the classifiers based on either the manifold or cluster assumption in recent years. In particular, the graph-based approaches, following the manifold assumption, have achieved a promising performance in many real-world applications. However, most of them work well on small-scale data sets only and lack probabilistic outputs. In this paper, a scalable graph-based SSL framework through sparse Bayesian model is proposed by defining a graph-based sparse prior. Based on the traditional Bayesian inference technique, a sparse Bayesian SSL algorithm ((SBSL)-L-2) is obtained, which can remove the irrelevant unlabeled samples and make probabilistic prediction for out-of-sample data. Moreover, in order to scale (SBSL)-L-2 to large-scale data sets, an incremental (SBSL)-L-2 ((ISBSL)-L-2) is derived. The key idea of (ISBSL)-L-2 is employing an incremental strategy and sequentially selecting parts of unlabeled samples that contribute to the learning instead of using all available unlabeled samples directly. (ISBSL)-L-2 has lower time and space complexities than previous SSL algorithms with the use of all unlabeled samples. Extensive experiments on various data sets verify that our algorithms can achieve comparable classification effectiveness and efficiency with much better scalability. Finally, the generalization error bound is derived based on robustness analysis.
引用
收藏
页码:2758 / 2771
页数:14
相关论文
共 50 条
  • [21] Graph-Based Semi-Supervised Learning: A Comprehensive Review
    Song, Zixing
    Yang, Xiangli
    Xu, Zenglin
    King, Irwin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8174 - 8194
  • [22] Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses
    Zhou, Fan
    Li, Tengfei
    Zhou, Haibo
    Ye, Jieping
    Zhu, Hongtu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] Graph-based methods for unsupervised and semi-supervised learning
    Saul, LK
    2005 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), 2005, : 3 - 3
  • [24] Graph-Based Semi-Supervised Learning with Redundant Views
    Gong, Yun-Chao
    Chen, Chuan-Liang
    Tian, Yin-Jie
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1393 - +
  • [25] Graph-based Semi-supervised Learning for Text Classification
    Widmann, Natalie
    Verberne, Suzan
    ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, 2017, : 59 - 66
  • [26] Learning Flexible Graph-Based Semi-Supervised Embedding
    Dornaika, Fadi
    El Traboulsi, Youssof
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 206 - 218
  • [27] Graph-Based Semi-Supervised Learning on Evolutionary Data
    Song, Yanglei
    Yang, Yifei
    Dou, Weibei
    Zhang, Changshui
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 467 - 476
  • [28] Coded Distributed Graph-Based Semi-Supervised Learning
    Du, Ying
    Tan, Siqi
    Han, Kaifeng
    Jiang, Jiamo
    Wang, Zhiqin
    Chen, Li
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 367 - 372
  • [29] A Discriminant Sparse Representation Graph-Based Semi-Supervised Learning for Hyperspectral Image Classification
    Shao, Yuanjie
    Gao, Changxin
    Sang, Nong
    COMPUTER VISION, CCCV 2015, PT I, 2015, 546 : 160 - 167
  • [30] Pseudo Contrastive Learning for graph-based semi-supervised learning
    Lu, Weigang
    Guan, Ziyu
    Zhao, Wei
    Yang, Yaming
    Lv, Yuanhai
    Xing, Lining
    Yu, Baosheng
    Tao, Dacheng
    NEUROCOMPUTING, 2025, 624