10 Gbit s-1 Free Space Data Transmission at 9 μm Wavelength With Unipolar Quantum Optoelectronics

被引:60
作者
Dely, Hamza [1 ]
Bonazzi, Thomas [1 ]
Spitz, Olivier [2 ]
Rodriguez, Etienne [1 ]
Gacemi, Djamal [1 ]
Todorov, Yanko [1 ]
Pantzas, Konstantinos [3 ]
Beaudoin, Gregoire [3 ]
Sagnes, Isabelle [3 ]
Li, Lianhe [4 ]
Davies, Alexander Giles [4 ]
Linfield, Edmund H. [4 ]
Grillot, Frederic [2 ]
Vasanelli, Angela [1 ]
Sirtori, Carlo [1 ]
机构
[1] Sorbonne Univ, Univ PSL, Univ Paris, CNRS,Lab Phys Ecole Normale Super ENS, 24 Rue Lhomond, F-75005 Paris, France
[2] Inst Polytech Paris, LTCI, Telecom Paris, 19 Pl Marguerite Perey, F-91120 Palaiseau, France
[3] Univ Paris Saclay, CNRS, Univ Paris Sud, Ctr Nanosci & Nanotechnol, 10 Blvd Thomas Gobert, F-91120 Palaiseau, France
[4] Univ Leeds, Sch Elect & Elect Engn, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
free space data transmission; mid-infrared; quantum devices; ROOM-TEMPERATURE; CASCADE LASERS; MODULATION; PHOTODETECTORS; GHZ;
D O I
10.1002/lpor.202100414
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Free space optics data transmission with bitrate in excess of 10 Gbit s(-1) is demonstrated at 9 mu m wavelength by using a unipolar quantum optoelectronic system at room temperature, composed of a quantum cascade laser, a modulator, and a quantum cascade detector. The large frequency bandwidth of the system is set by the detector and the modulator that are both high frequency devices, while the laser emits in continuous wave. The amplitude modulator relies on the Stark shift of an absorbing optical transition in and out of the laser frequency. This device is designed to avoid charge displacement, and therefore it is characterized by an intrinsically large bandwidth and very low electrical power consumption. This demonstration of high-bitrate data transmission sets unipolar quantum devices as the most performing platform for the development of optoelectronic systems operating at very high frequency in the mid-infrared for several applications, such as digital communications and high-resolution spectroscopy.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Long-wavelength infrared photovoltaic heterodyne receivers using patch-antenna quantum cascade detectors [J].
Bigioli, Azzurra ;
Armaroli, Giovanni ;
Vasanelli, Angela ;
Gacemi, Djamal ;
Todorov, Yanko ;
Palaferri, Daniele ;
Li, Lianhe ;
Davies, A. Giles ;
Linfield, Edmund H. ;
Sirtori, Carlo .
APPLIED PHYSICS LETTERS, 2020, 116 (16)
[2]   Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission [J].
Capasso, F ;
Paiella, R ;
Martini, R ;
Colombelli, R ;
Gmachl, C ;
Myers, TL ;
Taubman, MS ;
Williams, RM ;
Bethea, CG ;
Unterrainer, K ;
Hwang, HY ;
Sivco, DL ;
Cho, AY ;
Sergent, AM ;
Liu, HC ;
Whittaker, EA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :511-532
[3]   Forward Error Correction for 100 G Transport Networks [J].
Chang, Frank ;
Onohara, Kiyoshi ;
Mizuochi, Takashi .
IEEE COMMUNICATIONS MAGAZINE, 2010, 48 (03) :S48-S55
[4]  
Chen J, 2019, EUR C OPT COMMUN, V257, P257
[5]   Free space optical communications based on Quantum Cascade Lasers [J].
Delga, Alexandre ;
Leviandier, Luc .
QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XVI, 2019, 10926
[6]   Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor [J].
Diaz, Adrian ;
Thomas, Benjamin ;
Castillo, Paulo ;
Gross, Barry ;
Moshary, Fred .
APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (05)
[7]   Ultimate response time in mid-infrared high-speed low-noise quantum cascade detectors [J].
Dougakiuchi, Tatsuo ;
Ito, Akio ;
Hitaka, Masahiro ;
Fujita, Kazuue ;
Yamanishi, Masamichi .
APPLIED PHYSICS LETTERS, 2021, 118 (04)
[8]  
Grillot, 2021, NAT COMMUN, V3327, P12
[9]   Ultrafast Quantum-Well Photodetectors Operating at 10 μm with a Flat Frequency Response up to 70 GHz at Room Temperature [J].
Hakl, Michael ;
Lin, Quyang ;
Lepillet, Sylvie ;
Billet, Maximilien ;
Lampin, Jean-Francois ;
Pirotta, Stefano ;
Colombelli, Raffaele ;
Wan, Wenjian ;
Cao, J. C. ;
Li, Hua ;
Peytavit, Emilien ;
Barbieri, Stefano .
ACS PHOTONICS, 2021, 8 (02) :464-471
[10]   The Berkeley infrared spatial interferometer: A heterodyne stellar interferometer for the mid-infrared [J].
Hale, DDS ;
Bester, M ;
Danchi, WC ;
Fitelson, W ;
Hoss, S ;
Lipman, EA ;
Monnier, JD ;
Tuthill, PG ;
Townes, CH .
ASTROPHYSICAL JOURNAL, 2000, 537 (02) :998-1012