Inverse point source location with the Helmholtz equation on a bounded domain

被引:9
作者
Pieper, Konstantin [1 ,2 ]
Bao Quoc Tang [3 ]
Trautmann, Philip [3 ]
Walter, Daniel [4 ]
机构
[1] Florida State Univ, Dept Sci Comp, 400 Dirac Sci Lib, Tallahassee, FL 32306 USA
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, One Bethel Valley Rd,POB 2008,MS-6211, Oak Ridge, TN 37831 USA
[3] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[4] Tech Univ Munich, Ctr Math Sci, Ctr Math, M17,Boltzmannstr 3, D-85748 Munich, Germany
基金
奥地利科学基金会; 欧盟地平线“2020”;
关键词
Inverse source location; Sparsity; Helmholtz equation; PDE-constrained optimization; DIRECTIONAL SPARSITY; SOURCE LOCALIZATION; CONVERGENCE-RATES; SPACES;
D O I
10.1007/s10589-020-00205-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The problem of recovering acoustic sources, more specifically monopoles, from point-wise measurements of the corresponding acoustic pressure at a limited number of frequencies is addressed. To this purpose, a family of sparse optimization problems in measure space in combination with the Helmholtz equation on a bounded domain is considered. A weighted norm with unbounded weight near the observation points is incorporated into the formulation. Optimality conditions and conditions for recovery in the small noise case are discussed, which motivates concrete choices of the weight. The numerical realization is based on an accelerated conditional gradient method in measure space and a finite element discretization.
引用
收藏
页码:213 / 249
页数:37
相关论文
共 40 条
[1]  
[Anonymous], SERIES APPL MATH
[2]   Spike detection from inaccurate samplings [J].
Azais, Jean-Marc ;
de Castro, Yohann ;
Gamboa, Fabrice .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 38 (02) :177-195
[3]   Finite element methods in local active control of sound [J].
Bermúdez, A ;
Gamallo, P ;
Rodríguez, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (02) :437-465
[4]   THE ALTERNATING DESCENT CONDITIONAL GRADIENT METHOD FOR SPARSE INVERSE PROBLEMS [J].
Boyd, Nicholas ;
Schiebinger, Geoffrey ;
Recht, Benjamin .
SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) :616-639
[5]   INVERSE PROBLEMS IN SPACES OF MEASURES [J].
Bredies, Kristian ;
Pikkarainen, Hanna Katriina .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (01) :190-218
[6]  
Brezis H, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-387-70914-7_1
[7]   Convergence rates of convex variational regularization [J].
Burger, M ;
Osher, S .
INVERSE PROBLEMS, 2004, 20 (05) :1411-1421
[8]   Super-Resolution from Noisy Data [J].
Candes, Emmanuel J. ;
Fernandez-Granda, Carlos .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (06) :1229-1254
[9]   Towards a Mathematical Theory of Super- resolution [J].
Candes, Emmanuel J. ;
Fernandez-Granda, Carlos .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (06) :906-956
[10]   SPARSE INITIAL DATA IDENTIFICATION FOR PARABOLIC PDE AND ITS FINITE ELEMENT APPROXIMATIONS [J].
Casas, Eduardo ;
Vexler, Boris ;
Zuazua, Enrique .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2015, 5 (03) :377-399