Investigation Approach for a Nonlinear Singular Fredholm Integro-differential Equation

被引:4
作者
Touati, Sami [1 ]
Aissaoui, Mohamed Zine [1 ]
Lemita, Samir [2 ]
Guebbai, Hamza [1 ]
机构
[1] Univ Mai 1945 Guelma, Fac Math & Informat & Sci Mat, BP 401, Guelma 24000, Algeria
[2] Ecole Normale Super Ouargula, Ouargla 30000, Algeria
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2022年 / 40卷
关键词
Fredholm integro-differential equation; Singular kernel; Fixed point; Nonlinear equation; Product integration method;
D O I
10.5269/bspm.46898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine the existence and uniqueness of the solution of nonlinear integro-differential Fredholm equation with a weakly singular kernel. Then, we develop an iterative scheme to approach this solution using the product integration method. Finally, we conclude with a numerical test to show the effectiveness of the proposed method.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation [J].
Amiraliyev, Gabil M. ;
Durmaz, Muhammet Enes ;
Kudu, Mustafa .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (01) :71-88
[42]   A numerical solution of singularly perturbed Fredholm integro-differential equation with discontinuous source term [J].
Rathore, Ajay Singh ;
Shanthi, Vembu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 446
[43]   A Modification of the Parameterization Method for a Linear Boundary Value Problem for a Fredholm Integro-Differential Equation [J].
D. S. Dzhumabaev ;
K. Zh. Nazarova ;
R. E. Uteshova .
Lobachevskii Journal of Mathematics, 2020, 41 :1791-1800
[44]   A Modification of the Parameterization Method for a Linear Boundary Value Problem for a Fredholm Integro-Differential Equation [J].
Dzhumabaev, D. S. ;
Nazarova, K. Zh. ;
Uteshova, R. E. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (09) :1791-1800
[45]   An Efficient Method for the Numerical Solution of a Class of Nonlinear Fractional Fredholm Integro-Differential Equations [J].
Heydari, M. H. ;
Dastjerdi, H. Laeli ;
Ahmadabadi, M. Nili .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) :165-173
[46]   A class of nonlinear optimal control problems governed by Fredholm integro-differential equations with delay [J].
Marzban, Hamid Reza ;
Rostami Ashani, Mehrdad .
INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (09) :2199-2211
[47]   A computational approach to solving a second-order singularly perturbed Fredholm integro-differential equation with discontinuous source term [J].
Manebo, Wubeshet Seyoum ;
Woldaregay, Mesfin Mekuria ;
Dinka, Tekle Gemechu ;
Duressa, Gemechis File .
NUMERICAL ALGORITHMS, 2024, 97 (03) :1415-1430
[48]   NUMERICAL STUDY FOR A SECOND ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATION BY APPLYING GALERKIN-CHEBYSHEV-WAVELETS METHOD [J].
Henka, Youcef ;
Lemita, Samir ;
Aissaoui, Mohamed Zine .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2022, 21 (04) :28-39
[49]   An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition [J].
Muhammet Enes Durmaz ;
Ilhame Amirali ;
Gabil M. Amiraliyev .
Journal of Applied Mathematics and Computing, 2023, 69 :505-528
[50]   A fitted numerical method for a singularly perturbed Fredholm integro-differential equation with discontinuous source term [J].
Rathore, Ajay Singh ;
Shanthi, Vembu ;
Ramos, Higinio .
APPLIED NUMERICAL MATHEMATICS, 2023, 185 :88-100