Scaling theory of Z2 topological invariants

被引:32
|
作者
Chen, Wei [1 ]
Sigrist, Manfred [1 ]
Schnyder, Andreas P. [2 ]
机构
[1] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[2] Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany
关键词
topological insulators; scaling; renormalization group; topological phase transition; topological superconductors; critical exponent; topological invariant; PHASE; INSULATORS;
D O I
10.1088/0953-8984/28/36/365501
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
For inversion-symmetric topological insulators and superconductors characterized by Z(2) topological invariants, two scaling schemes are proposed to judge topological phase transitions driven by an energy parameter. The scaling schemes renormalize either the phase gradient or the second derivative of the Pfaffian of the time-reversal operator, through which the renormalization group flow of the driving energy parameter can be obtained. The Pfaffian near the time-reversal invariant momentum is revealed to display a universal critical behavior for a great variety of models examined.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Z2 Invariants of Topological Insulators as Geometric Obstructions
    Fiorenza, Domenico
    Monaco, Domenico
    Panati, Gianluca
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (03) : 1115 - 1157
  • [2] Measuring Z2 topological invariants in optical lattices using interferometry
    Grusdt, F.
    Abanin, D.
    Demler, E.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [3] Topological invariants for phase transition points of one-dimensional Z2 topological systems
    Li, Linhu
    Yang, Chao
    Chen, Shu
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (09):
  • [4] Topological invariants for phase transition points of one-dimensional Z2 topological systems
    Linhu Li
    Chao Yang
    Shu Chen
    The European Physical Journal B, 2016, 89
  • [5] Z2 topological invariants in two dimensions from quantum Monte Carlo
    Lang, Thomas C.
    Essin, Andrew M.
    Gurarie, Victor
    Wessel, Stefan
    PHYSICAL REVIEW B, 2013, 87 (20)
  • [6] On the Z2 topological invariant
    Drissi, L. B.
    Saidi, E. H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [7] Quantum phase transition from Z2 x Z2 to Z2 topological order
    Zarei, Mohammad Hossein
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [8] Wannier functions and Z2 invariants in time-reversal symmetric topological insulators
    Cornean, Horia D.
    Monaco, Domenico
    Teufel, Stefan
    REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (02)
  • [9] Designing Z2 and Z2 x Z2 topological orders in networks of Majorana bound states
    Mohammadi, Fatemeh
    Kargarian, Mehdi
    PHYSICAL REVIEW B, 2022, 105 (16)
  • [10] Z2 Topological Anderson Insulator
    Yamakage, Ai
    Nomura, Kentaro
    Imura, Ken-Ichiro
    Kuramoto, Yoshio
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400