Classical symmetries and the Quantum Approximate Optimization Algorithm

被引:38
作者
Shaydulin, Ruslan [1 ,2 ,3 ]
Hadfield, Stuart [2 ,4 ]
Hogg, Tad [2 ]
Safro, Ilya [5 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] NASA, Quantum Artificial Intelligence Lab QuAIL, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] KBR, Houston, TX 77002 USA
[4] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA
[5] Univ Delaware, Comp & Informat Sci, Newark, DE 19716 USA
关键词
Quantum approximate optimization algorithm; Quantum optimization; AUTOMORPHISM GROUP; GRAPHS; ISOMORPHISM; GENERATION; COMPLEXITY; INDEX; CUT;
D O I
10.1007/s11128-021-03298-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dynamics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular, we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques toward predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.
引用
收藏
页数:28
相关论文
共 84 条
[1]  
[Anonymous], 2009, INT J COMPUTER SYSTE
[2]   Polynomial time approximation schemes for dense instances of NP-hard problems [J].
Arora, S ;
Karger, D ;
Karpinski, M .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1999, 58 (01) :193-210
[3]  
Arute F., 2020, ARXIV190903123
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]  
Arving V, 2007, LECT NOTES
[6]   Graph Isomorphism in Quasipolynomial Time [Extended Abstract] [J].
Babai, Laszlo .
STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, :684-697
[7]   COMPUTER-GENERATION OF AUTOMORPHISM-GROUPS OF WEIGHTED GRAPHS [J].
BALASUBRAMANIAN, K .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05) :1146-1150
[8]   How Symmetric Are Real-World Graphs? A Large-Scale Study [J].
Ball, Fabian ;
Geyer-Schulz, Andreas .
SYMMETRY-BASEL, 2018, 10 (01)
[9]  
Bapat A, 2019, QUANTUM INF COMPUT, V19, P424
[10]   Improving Variational Quantum Optimization using CVaR [J].
Barkoutsos, Panagiotis Kl. ;
Nannicini, Giacomo ;
Robert, Anton ;
Tavernelli, Ivano ;
Woerner, Stefan .
QUANTUM, 2020, 4