Multidimensional Discrete-Time Fractional Calculus of Variations

被引:0
作者
Malinowska, Agnieszka B. [1 ]
Odzijewicz, Tatiana [2 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[2] Warsaw Sch Econ, Dept Math & Math Econ, PL-02554 Warsaw, Poland
来源
THEORETICAL DEVELOPMENTS AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS | 2016年 / 357卷
关键词
Backward fractional difference; Forward fractional difference; Grunvald; Letnikov fractional difference; Euler-Lagrange equations;
D O I
10.1007/978-3-319-23039-9_2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper a discrete-time multidimensional fractional calculus of variations is introduced. The fractional operators are defined in the sense of Grunvald-Letnikov. We derive necessary optimality conditions and then give examples illustrating the use of obtained results.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 20 条
[1]   Sturm-Liouville eigenvalue problems on time scales [J].
Agarwal, RP ;
Bohner, M ;
Wong, PJY .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) :153-166
[2]  
[Anonymous], 2011, LECT NOTES ELECT ENG
[3]  
Atici F M., 2007, International Journal of Difference Equations, V2, P165
[4]  
Atici FM, 2009, P AM MATH SOC, V137, P981
[5]   Discrete-time fractional variational problems [J].
Bastos, Nuno R. O. ;
Ferreira, Rui A. C. ;
Torres, Delfim F. M. .
SIGNAL PROCESSING, 2011, 91 (03) :513-524
[6]   NECESSARY OPTIMALITY CONDITIONS FOR FRACTIONAL DIFFERENCE PROBLEMS OF THE CALCULUS OF VARIATIONS [J].
Bastos, Nuno R. O. ;
Ferreira, Rui A. C. ;
Torres, Delfim F. M. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (02) :417-437
[7]  
Bourdin L., 2012, COMMUN NONLINEAR SCI, V18
[8]   Variational integrator for fractional Euler-Lagrange equations [J].
Bourdin, Loic ;
Cresson, Jacky ;
Greff, Isabelle ;
Inizan, Pierre .
APPLIED NUMERICAL MATHEMATICS, 2013, 71 :14-23
[9]  
Kaczorek T, 2011, LECT NOTES CONTR INF, V411, P1, DOI 10.1007/978-3-642-20502-6
[10]  
Kelley W. G., 1991, Difference Equations: An Introduction with Applications