Parallel Compression of Weighted Graphs

被引:0
作者
En, Elena [1 ]
Alam, Aftab [1 ]
Khan, Kifayat Ullah [1 ]
Lee, Young-Koo [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Sci & Engn, Yongin 446701, South Korea
来源
PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EMERGING DATABASES: TECHNOLOGIES, APPLICATIONS, AND THEORY | 2018年 / 461卷
基金
新加坡国家研究基金会;
关键词
Weighted graph; Network; Graph compression; Graph clustering; Parallel processing; Graph mining; NETWORKS;
D O I
10.1007/978-981-10-6520-0_8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large graphs such as social network, web graph, biological network, are complex and facing the challenges of processing and visualization. Motivated by such issues, Taivonen et al. [1] proposed models and sequential algorithms for weighted graph with the intentions to generate a candidate compress graph. The proposed compression algorithm is expensive in terms of computation time because of the sequential process. The weighted graph compression algorithms can be made faster while adopting parallel processing technique. In this paper, we adopt parallel processing technique for weighted graph compression problem while using multi-selection nodes to perform merge-able technique with various graph clustering algorithms to avoid overlapping between nodes from different threads. For the performance evaluation purposes of the proposed method, we carry out series of tests on the real networks. We perform extensive experiments on parallel graph summarization while using different graph clustering algorithms. Our results demonstrate their effectiveness for parallel graph compression on real networks.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 9 条
[1]  
[Anonymous], P 2008 ACM SIGMOD IN
[2]  
Baruah DowerahTrisha., 2012, INT J SCI RES PUBLIC, V2, P1, DOI [DOI 10.1145/3173574.3173860, 10.1.1.376.5533]
[3]   Integration of biological networks and gene expression data using Cytoscape [J].
Cline, Melissa S. ;
Smoot, Michael ;
Cerami, Ethan ;
Kuchinsky, Allan ;
Landys, Nerius ;
Workman, Chris ;
Christmas, Rowan ;
Avila-Campilo, Iliana ;
Creech, Michael ;
Gross, Benjamin ;
Hanspers, Kristina ;
Isserlin, Ruth ;
Kelley, Ryan ;
Killcoyne, Sarah ;
Lotia, Samad ;
Maere, Steven ;
Morris, John ;
Ono, Keiichiro ;
Pavlovic, Vuk ;
Pico, Alexander R. ;
Vailaya, Aditya ;
Wang, Peng-Liang ;
Adler, Annette ;
Conklin, Bruce R. ;
Hood, Leroy ;
Kuiper, Martin ;
Sander, Chris ;
Schmulevich, Ilya ;
Schwikowski, Benno ;
Warner, Guy J. ;
Ideker, Trey ;
Bader, Gary D. .
NATURE PROTOCOLS, 2007, 2 (10) :2366-2382
[4]  
Navlakha S., 2008, P 2008 ACM SIGMOD IN
[5]  
Nielsen F., 2016, Hierarchical Clustering, Introduction to HPC With MPI for Data Science
[6]   Survey: Enhancing protein complex prediction in PPI networks with GO similarity weighting [J].
Price, True ;
Pena, Francisco I., III ;
Cho, Young-Rae .
INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2013, 5 (03) :196-210
[7]   MODELING BY SHORTEST DATA DESCRIPTION [J].
RISSANEN, J .
AUTOMATICA, 1978, 14 (05) :465-471
[8]  
Sakr Sherif, 2013, IBM DEVELOPERWORKS, P15
[9]  
Toivonen H, 2011, P 17 ACM SIGKDD INT