Statistical Study of the Properties of Magnetosheath Lion Roars

被引:17
作者
Giagkiozis, Stefanos [1 ]
Wilson, Lynn B. [2 ]
Burch, James L. [3 ]
Le Contel, Olivier [4 ]
Ergun, Robert E. [5 ]
Gershman, Daniel J. [6 ,7 ]
Lindqvist, Per-Arne [8 ]
Mirioni, Laurent [9 ]
Moore, Thomas E. [2 ]
Strangeway, Robert J. [10 ,11 ]
机构
[1] Univ Sheffield, Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[2] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD USA
[3] Southwest Res Inst, San Antonio, TX USA
[4] Univ Paris Sud, Sorbonne Univ, CNRS, Lab Phys Plasmas,UMR7648,Ecole Polytech,Observ Pa, Paris, France
[5] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA
[6] NASA, Goddard Space Flight Ctr, Fields & Particles, Greenbelt, MD USA
[7] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[8] KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden
[9] Sorbonne Univ UPMC Paris Sud 11, LPP, CNRS, Ecole Polytech, Palaiseau, France
[10] Univ Calif Los Angeles, Dept Geophys & Planetary Phys, Los Angeles, CA 90024 USA
[11] Univ Calif Los Angeles, Earth & Space Sci, Los Angeles, CA USA
关键词
IN-CELL SIMULATIONS; WHISTLER WAVES; INTERPLANETARY SHOCKS; ELECTRON; GENERATION; TURBULENCE; BETA;
D O I
10.1029/2018JA025343
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Lion roars are narrowband whistler wave emissions that have been observed in several environments, such as planetary magnetosheaths, the Earth's magnetosphere, the solar wind, downstream of interplanetary shocks, and the cusp region. We present measurements of more than 30,000 such emissions observed by the Magnetospheric Multiscale spacecraft with high-cadence (8,192 samples/s) search coil magnetometer data. A semiautomatic algorithm was used to identify the emissions, and an adaptive interval algorithm in conjunction with minimum variance analysis was used to determine their wave vector. The properties of the waves are determined in both the spacecraft and plasma rest frame. The mean wave normal angle, with respect to the background magnetic field (B-0), plasma bulk flow velocity (V-b), and the coplanarity plane (V-b x B-0) are 23 degrees, 56 degrees, and 0 degrees, respectively. The average peak frequencies were similar to 31% of the electron gyrofrequency (omega(ce)) observed in the spacecraft frame and similar to 18% of omega(ce) in the plasma rest frame. In the spacecraft frame, similar to 99% of the emissions had a frequency < omega(ce), while 98% had a peak frequency < 0.72 omega(ce) in the plasma rest frame. None of the waves had frequencies lower than the lower hybrid frequency, omega. From the probability density function of the electron plasma beta(e), the ratio between the electron thermal and magnetic pressure, similar to 99.6% of the waves were observed with beta(e) < 4 with a large narrow peak at 0.07 and two smaller, but wider, peaks at 1.26 and 2.28, while the average value was similar to 1.25.
引用
收藏
页码:5435 / 5451
页数:17
相关论文
共 30 条
[1]   Waveform and packet structure of lion roars [J].
Baumjohann, W ;
Treumann, RA ;
Georgescu, E ;
Haerendel, G ;
Fornacon, KH ;
Auster, U .
ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1999, 17 (12) :1528-1534
[2]   Observations of large-amplitude, narrowband whistlers at stream interaction regions [J].
Breneman, A. ;
Cattell, C. ;
Schreiner, S. ;
Kersten, K. ;
Wilson, L. B., III ;
Kellogg, P. ;
Goetz, K. ;
Jian, L. K. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[3]   The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission [J].
Breuillard, H. ;
Le Contel, O. ;
Chust, T. ;
Berthomier, M. ;
Retino, A. ;
Turner, D. L. ;
Nakamura, R. ;
Baumjohann, W. ;
Cozzani, G. ;
Catapano, F. ;
Alexandrova, A. ;
Mirioni, L. ;
Graham, D. B. ;
Argall, M. R. ;
Fischer, D. ;
Wilder, F. D. ;
Gershman, D. J. ;
Varsani, A. ;
Lindqvist, P. -A. ;
Khotyaintsev, Yu. V. ;
Marklund, G. ;
Ergun, R. E. ;
Goodrich, K. A. ;
Ahmadi, N. ;
Burch, J. L. ;
Torbert, R. B. ;
Needell, G. ;
Chutter, M. ;
Rau, D. ;
Dors, I. ;
Russell, C. T. ;
Magnes, W. ;
Strangeway, R. J. ;
Bromund, K. R. ;
Wei, H. ;
Plaschke, F. ;
Anderson, B. J. ;
Le, G. ;
Moore, T. E. ;
Giles, B. L. ;
Paterson, W. R. ;
Pollock, C. J. ;
Dorelli, J. C. ;
Avanov, L. A. ;
Saito, Y. ;
Lavraud, B. ;
Fuselier, S. A. ;
Mauk, B. H. ;
Cohen, I. J. ;
Fennell, J. F. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (01) :93-103
[4]   FUNDAMENTALS OF VERY LOW FREQUENCY EMISSION GENERATION MECHANISMS [J].
BRICE, N .
JOURNAL OF GEOPHYSICAL RESEARCH, 1964, 69 (21) :4515-+
[5]   Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations [J].
Chang, Ouliang ;
Gary, S. Peter ;
Wang, Joseph .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (06) :2824-2833
[6]  
Farris M. H., 1994, J GEOPHYS RES, V99, P17, DOI [10.1029/94JA01020, DOI 10.1029/94JA01020]
[7]   THE THICKNESS OF THE MAGNETOSHEATH - CONSTRAINTS ON THE POLYTROPIC INDEX [J].
FARRIS, MH ;
PETRINEC, SM ;
RUSSELL, CT .
GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (10) :1821-1824
[8]   WHISTLER DAMPING AT OBLIQUE PROPAGATION - LAMINAR SHOCK PRECURSORS [J].
GARY, SP ;
MELLOTT, MM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1985, 90 (NA1) :99-104
[9]   Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations [J].
Hughes, R. Scott ;
Gary, S. Peter ;
Wang, Joseph .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (24) :8681-8687
[10]   LIMIT ON STABLY TRAPPED PARTICLE FLUXES [J].
KENNEL, CF ;
PETSCHEK, HE .
JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (01) :1-+