A Monte Carlo evaluation of the performance of two new tests for symmetry

被引:9
作者
Allison, James S. [1 ]
Pretorius, Charl [1 ]
机构
[1] North West Univ, Dept Stat, 1 Hoffman St, ZA-2531 Potchefstroom, South Africa
基金
新加坡国家研究基金会;
关键词
Characterisation of symmetry; Empirical characteristic function; Goodness-of-fit; EMPIRICAL CHARACTERISTIC FUNCTION; NONPARAMETRIC REGRESSION-MODELS; ERROR DISTRIBUTION; DISTRIBUTIONS; ASYMMETRY; PARAMETER; LOCATION;
D O I
10.1007/s00180-016-0680-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose two new tests for symmetry based on well-known characterisations of symmetric distributions. The performance of the new tests is evaluated and compared to that of other existing tests by means of a Monte Carlo study. All tests are carried out in a regression setup where we test whether the error distribution in a linear regression model is symmetric. It is found that the newly proposed tests perform favourably compared to the other tests.
引用
收藏
页码:1323 / 1338
页数:16
相关论文
共 37 条
[11]   SOME RESULTS CONCERNING SYMMETRIC DISTRIBUTIONS [J].
CSORGO, S ;
HEATHCOTE, CR .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1982, 25 (03) :327-335
[12]   TESTING FOR SYMMETRY [J].
CSORGO, S ;
HEATHCOTE, CR .
BIOMETRIKA, 1987, 74 (01) :177-184
[13]   Testing symmetry in nonparametric regression models [J].
Dette, H ;
Kusi-Appiah, S ;
Neumeyer, N .
JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (05) :477-494
[14]   A test for symmetries of multivariate probability distributions [J].
Diks, C ;
Tong, H .
BIOMETRIKA, 1999, 86 (03) :605-614
[15]   PLOTS AND TESTS FOR SYMMETRY [J].
DOKSUM, KA ;
FENSTAD, G ;
AABERGE, R .
BIOMETRIKA, 1977, 64 (03) :473-487
[16]   An asymptotically distribution-free test of symmetry [J].
Ekstrom, Magnus ;
Jammalamadaka, S. Rao .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) :799-810
[17]   Limiting behavior of the ICF test for normality under Gram-Charlier alternatives [J].
Epps, TW .
STATISTICS & PROBABILITY LETTERS, 1999, 42 (02) :175-184
[18]   EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATIONS [J].
FEUERVERGER, A ;
MUREIKA, RA .
ANNALS OF STATISTICS, 1977, 5 (01) :88-97
[19]   Invariant tests for symmetry about an unspecified point based on the empirical characteristic function [J].
Henze, N ;
Klar, B ;
Meintanis, SG .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (02) :275-297
[20]   Finite sample performance of tests for symmetry of the errors in a linear model [J].
Hettmansperger, TP ;
McKean, JW ;
Sheather, SJ .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (11) :863-879