Atomistic simulations of InGaN/GaN random alloy quantum well LEDs

被引:11
作者
Lopez, M. [1 ]
Pecchia, A. [2 ]
Maur, M. Auf Der [1 ]
Sacconi, F. [3 ]
Penazzi, G. [4 ]
Di Carlo, A. [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Elect Engn, Via Politecn 1, I-00133 Rome, Italy
[2] CNR ISMN, I-00017 Monterotondo, Italy
[3] Via Politecn 1, Tiberlab Srl, I-00133 Rome, Italy
[4] Univ Bremen, Bremen Ctr Computat Mat Sci, D-28359 Bremen, Germany
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 3-4 | 2014年 / 11卷 / 3-4期
关键词
atomistic modeling; tight-binding; valence force field; random alloy; InGaN quantum well; Monte Carlo;
D O I
10.1002/pssc.201300450
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, a random distribution of Indium in a quantum well has been considered to study the effect on the energy gap of a GaN/InGaN/GaN LED device. Monte Carlo sampling technique has been used to generate hundreds of atomistic model structures of the device active region. In order to calculate pseudomorphic strain and internal deformations of the alloy, a multiscale method combining continuous media elasticity and atomistic valence force field models has been used. A multiphysic quantum/classical simulation coupling drift-diffusion with empirical tight-binding in order to compute the electron and hole states of the system has been performed. The reliable sp(3)d(5)s* parametrization has been used in the calculations of the eigenstates. We have found an energy gap difference of 50.9 meV for x(In) = 0.1 molar fraction between using virtual crystal approximation and a random distribution of In which increase with increasing Indium concentration. Moreover, electrons wave function seems to be more sensitive than holes due to Indium fluctuations [GRAPHICS] Electron and hole ground state spatial probability density (SPD) for a random QW sample (yellow: electron SPD, green: hole SPD. Red dots: In atoms, Gray dots: Ga atoms) (C) 201 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:632 / 634
页数:3
相关论文
共 16 条
[11]   Homogenous indium distribution in InGaN/GaN laser active structure grown by LP-MOCVD on bulk GaN crystal revealed by transmission electron microscopy and x-ray diffraction [J].
Kret, S. ;
Dluzewski, P. ;
Szczepanska, A. ;
Zak, M. ;
Czerneck, R. ;
Krysko, M. ;
Leszczynski, M. ;
Maciejewski, G. .
NANOTECHNOLOGY, 2007, 18 (46)
[12]   Emission studies of InGaN layers and LEDs grown by plasma-assisted MBE [J].
Laukkanen, P ;
Lehkonen, S ;
Uusimaa, P ;
Pessa, M ;
Seppälä, A ;
Ahlgren, T ;
Rauhala, E .
JOURNAL OF CRYSTAL GROWTH, 2001, 230 (3-4) :503-506
[13]   Structural analysis of InGaN epilayers [J].
O'Donnell, KP ;
Mosselmans, JFW ;
Martin, RW ;
Pereira, S ;
White, ME .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (32) :6977-6991
[14]   Elasticity theory of pseudomorphic heterostructures grown on substrates of arbitrary thickness [J].
Povolotskyi, Michael ;
Di Carlo, Aldo .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (06)
[15]   Analysis of statistical compositional alloy fluctuations in InGaN from aberration corrected transmission electron microscopy image series [J].
Schulz, T. ;
Remmele, T. ;
Markurt, T. ;
Korytov, M. ;
Albrecht, M. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (03)
[16]   The influence of alloy disorder and hydrostatic pressure on electrical and optical properties of In-rich InGaN compounds [J].
Suski, T. ;
Franssen, G. ;
Kaminska, A. ;
Khachapuridze, A. ;
Teisseyre, H. ;
Plesiewicz, J. A. ;
Dmowski, L. H. ;
Lu, H. ;
Schaff, W. J. ;
Kurouchid, M. ;
Nanishi, Y. .
GALLIUM NITRIDE MATERIALS AND DEVICES II, 2007, 6473